应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2009年
1期
161-167
,共7页
图,染色数%无符号Laplace谱半径
圖,染色數%無符號Laplace譜半徑
도,염색수%무부호Laplace보반경
Graph%Chromatic number%Signless Laplacian spectral radius
设Gkn(k≥2)为n阶的染色数为k的连通图的集合.本文确定了Gkn中具有极大无符号Laplace谱半径的图,即k=2时为完全二部图,k≥3时为Turn图.本文也讨论了Gkn中的具有极小无符号Laplace谱半径的图,对k≤3的情形给出了此类图的刻画.
設Gkn(k≥2)為n階的染色數為k的連通圖的集閤.本文確定瞭Gkn中具有極大無符號Laplace譜半徑的圖,即k=2時為完全二部圖,k≥3時為Turn圖.本文也討論瞭Gkn中的具有極小無符號Laplace譜半徑的圖,對k≤3的情形給齣瞭此類圖的刻畫.
설Gkn(k≥2)위n계적염색수위k적련통도적집합.본문학정료Gkn중구유겁대무부호Laplace보반경적도,즉k=2시위완전이부도,k≥3시위Turn도.본문야토론료Gkn중적구유겁소무부호Laplace보반경적도,대k≤3적정형급출료차류도적각화.
Let Gkn(k≥2) be the set of all connected graphs of order n with chromatic number k.We determine the graphs with maximal signless Laplacian spectral radius among all graphs in Gkn,namely complete bipartite graphs for k=2 and Turn graph for k≥3.We also consider the graphs with minimal signless Laplacian spectral radius in Gkn, and characterized such graphs for k≤3.