计算机科学技术学报(英文版)
計算機科學技術學報(英文版)
계산궤과학기술학보(영문판)
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
2005年
5期
596-606
,共11页
on-chip memory%sequential access buffer%media benchmark%flexible sequential and random access memory
The on-chip memory performance of embedded systems directly affects the system designers' decision about how to allocate expensive silicon area. A novel memory architecture, flexible sequential and random access memory (FSRAM),is investigated for embedded systems. To realize sequential accesses, small "links" are added to each row in the RAM array to point to the next row to be prefetched. The potential cache pollution is ameliorated by a small sequential access buffer (SAB). To evaluate the architecture-level performance of FSRAM, we ran the Mediabench benchmark programs on a modified version of the SimpleScalar simulator. Our results show that the FSRAM improves the performance of a baseline processor with a 16KB data cache up to 55%, with an average of 9%; furthermore, the FSRAM reduces 53.1% of the data cache miss count on average due to its prefetching effect. We also designed RTL and SPICE models of the FSRAM, which show that the FSRAM significantly improves memory access time, while reducing power consumption, with negligible area overhead.