农业工程学报
農業工程學報
농업공정학보
2009年
11期
330-335
,共6页
李汴生%刘伟涛%李丹丹%申晓曦%俞裕明%阮征%朱志伟
李汴生%劉偉濤%李丹丹%申曉晞%俞裕明%阮徵%硃誌偉
리변생%류위도%리단단%신효희%유유명%원정%주지위
热风干燥%模型%含水率%加应子%凉果%干燥速率
熱風榦燥%模型%含水率%加應子%涼果%榦燥速率
열풍간조%모형%함수솔%가응자%량과%간조속솔
hot air drying%models%moisture content%prunes%preserved fruit%drying rate
该文探讨了糖渍加应子样品在不同温度下热风干燥特性,通过建立数学模型,预测不同热风干燥过程加应子水分变化特性.干燥特性试验表明,加应子热风干燥是内部水分扩散控制的降速干燥过程,40~80℃范围内,温度对干燥速率有显著影响(P<0.05),温度越高,干燥速率越快,前2 h,40℃时,干燥速率从3.52×10~(-2) g/(g·h) 降至2.03× 10~(-2) g/(g·h),降低了42.33%,80℃时,干燥速率由14.64×10~(-2) g/(g·h) 降至4.22×10~(-2) g/(g·h),降低了71.17%;80~100℃范围内,样品表面出现结壳硬化现象,温度对干燥速率影响减弱(P>0.05).结果表明,Page模型适合对加应子干燥过程进行描述和预测;Page模型变形求导得出加应子干燥速率模型,模型拟合度高,可为其干燥工艺的控制提供技术依据.
該文探討瞭糖漬加應子樣品在不同溫度下熱風榦燥特性,通過建立數學模型,預測不同熱風榦燥過程加應子水分變化特性.榦燥特性試驗錶明,加應子熱風榦燥是內部水分擴散控製的降速榦燥過程,40~80℃範圍內,溫度對榦燥速率有顯著影響(P<0.05),溫度越高,榦燥速率越快,前2 h,40℃時,榦燥速率從3.52×10~(-2) g/(g·h) 降至2.03× 10~(-2) g/(g·h),降低瞭42.33%,80℃時,榦燥速率由14.64×10~(-2) g/(g·h) 降至4.22×10~(-2) g/(g·h),降低瞭71.17%;80~100℃範圍內,樣品錶麵齣現結殼硬化現象,溫度對榦燥速率影響減弱(P>0.05).結果錶明,Page模型適閤對加應子榦燥過程進行描述和預測;Page模型變形求導得齣加應子榦燥速率模型,模型擬閤度高,可為其榦燥工藝的控製提供技術依據.
해문탐토료당지가응자양품재불동온도하열풍간조특성,통과건립수학모형,예측불동열풍간조과정가응자수분변화특성.간조특성시험표명,가응자열풍간조시내부수분확산공제적강속간조과정,40~80℃범위내,온도대간조속솔유현저영향(P<0.05),온도월고,간조속솔월쾌,전2 h,40℃시,간조속솔종3.52×10~(-2) g/(g·h) 강지2.03× 10~(-2) g/(g·h),강저료42.33%,80℃시,간조속솔유14.64×10~(-2) g/(g·h) 강지4.22×10~(-2) g/(g·h),강저료71.17%;80~100℃범위내,양품표면출현결각경화현상,온도대간조속솔영향감약(P>0.05).결과표명,Page모형괄합대가응자간조과정진행묘술화예측;Page모형변형구도득출가응자간조속솔모형,모형의합도고,가위기간조공예적공제제공기술의거.
The drying characteristics of candied prunes at different hot air drying temperatures were investigated, and the moisture content of the prunes in different hot air drying could be predicted by establishing the mathematical models. The results showed that drying process of prunes occurred in the falling rate period, and the moisture transfer was controlled by internal diffusion. The drying rate was significantly influenced by temperature at the range of 40-80℃ (P<0.05). The drying rate decreased by 42.33% from 3.52×10~(-2) g/(g·h) to 2.03×10~(-2) g/(g·h) at 40℃ while the drying rate decreased by 71.17% form 14.64×10~(-2) g/(g·h) to 4.22×10~(-2) g/(g·h) at 80℃ during the drying period of 2 h. And temperature range from 80-100℃ showed lower influence on drying rate (P>0.05) due to the case hardening effect. Modeling study indicated that Page equation could be suitable to describe the drying process of prunes according to the coefficients of determination (R~2, χ~2), and good agreement was found when random experimental data was compared with equation prediction. Drying rate equation calculated by the Page equation had good coincidence with experimental study. The results can provide technical bases for the control of drying technology.