运筹学学报
運籌學學報
운주학학보
OR TRANSACTIONS
2011年
3期
29-37
,共9页
(d,1)-全标号%列表(d,1)-全标号%列表(d,1)-全标号数%图
(d,1)-全標號%列錶(d,1)-全標號%列錶(d,1)-全標號數%圖
(d,1)-전표호%렬표(d,1)-전표호%렬표(d,1)-전표호수%도
(d,1)-total labelling%list (d,1)-total labelling%list (d,1)-total labelling number%graphs
图的(d,1)-全标号问题最初是由Havet等人提出的.在本文中,我们考虑了可嵌入曲面图的列表(d,1)-全标号问题,并证明了其列表(d,1)-全标号数不超过△(G)+2d.
圖的(d,1)-全標號問題最初是由Havet等人提齣的.在本文中,我們攷慮瞭可嵌入麯麵圖的列錶(d,1)-全標號問題,併證明瞭其列錶(d,1)-全標號數不超過△(G)+2d.
도적(d,1)-전표호문제최초시유Havet등인제출적.재본문중,아문고필료가감입곡면도적렬표(d,1)-전표호문제,병증명료기렬표(d,1)-전표호수불초과△(G)+2d.
The (d,1)-total labelling of graphs was introduced by Havet and Yu.In this paper,we consider the list version of (d,1)-total labelling of graphs.Let G be a graph embedded in a surface with Euler characteristic ε whose maximum degree △(G) is sufficiently large.We prove that the list (d,1)-total labelling number ChTd,1(G) of G is at most △(G) + 2d.