管理科学学报
管理科學學報
관이과학학보
JOURNAL OF MANAGEMENT SCIENCES IN CHINA
2010年
2期
24-32
,共9页
n人对策%模糊联盟%Choquet积分%Shapley值
n人對策%模糊聯盟%Choquet積分%Shapley值
n인대책%모호련맹%Choquet적분%Shapley치
n-persons games%fuzzy coalitions%Choquet integral%Shapley value
由于n人对策任意联盟可由它的特征向量来等价地表示,利用Choquet积分,将n人对策从集合[0, 1}~n延拓到[0, 1]~n上,通过建立公理化体系,对具有Choquet延拓形式n人模糊对策的Shapley值进行深入研究,证明了这类n人模糊对策Shapley值存在性与惟一性,并给出了此模糊对策Shapley值的解释表达式. 最后将此模糊对策的Shapley值作为收益分配方案应用到供应链协作企业收益分配的实例中.
由于n人對策任意聯盟可由它的特徵嚮量來等價地錶示,利用Choquet積分,將n人對策從集閤[0, 1}~n延拓到[0, 1]~n上,通過建立公理化體繫,對具有Choquet延拓形式n人模糊對策的Shapley值進行深入研究,證明瞭這類n人模糊對策Shapley值存在性與惟一性,併給齣瞭此模糊對策Shapley值的解釋錶達式. 最後將此模糊對策的Shapley值作為收益分配方案應用到供應鏈協作企業收益分配的實例中.
유우n인대책임의련맹가유타적특정향량래등개지표시,이용Choquet적분,장n인대책종집합[0, 1}~n연탁도[0, 1]~n상,통과건립공이화체계,대구유Choquet연탁형식n인모호대책적Shapley치진행심입연구,증명료저류n인모호대책Shapley치존재성여유일성,병급출료차모호대책Shapley치적해석표체식. 최후장차모호대책적Shapley치작위수익분배방안응용도공응련협작기업수익분배적실례중.
For n-person games, any coalition can equivalently be represented by its characteristic vectors. In this paper, by means of Choquet integral, n person games are extended from [0, 1]~n to[0, 1]~n. According to axioms system, we investigate and prove the existence and uniqueness of a solution concept for n person games with fuzzy coalition, which is called the Shapley value. An explicit formula of the Shapley value is given. Finally, we apply the method to profit allocation scheme among enterprises in supply chain coordination.