机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2010年
2期
28-33
,共6页
噪声方差估计%高斯混合模型%系数相关性%小波阈值降噪
譟聲方差估計%高斯混閤模型%繫數相關性%小波閾值降譟
조성방차고계%고사혼합모형%계수상관성%소파역치강조
Estimation of noise variance%Gaussian mixture model%Correlation of the coefficients%Wavelet threshold denoising
信号中包含的噪声不仅降低了信号的质量,而且还严重影响着各种相关处理算法的有效性,因此,高效稳健的噪声方差估计对于各类信号处理非常重要.提出一种噪声方差估计的新方法,该方法首先应用两状态高斯混合模型对高频系数建模,混合模型的各项参数通过EM(Expectation-maximum)算法迭代估算得到.在建立的高斯混合模型中,当参数满足一定条件时,可以将高频系数分为噪声类和边缘类.基于高频子带内系数的相关性,对噪声类所包含的系数再次应用高斯混合模型的方法分类,并在每个类中分别进行噪声的估计,最后对所得噪声信号计算方差作为原始信号的噪声方差估计.基于这种估计方法,将小波阈值法应用到反求工程的降噪中,实际信号的降噪结果在光滑性和特征保持方面均有较好的效果.试验表明,该噪声方差估计方法对噪声大小具有一定适应性,且小波阈值降噪法简单易行,应用广泛.
信號中包含的譟聲不僅降低瞭信號的質量,而且還嚴重影響著各種相關處理算法的有效性,因此,高效穩健的譟聲方差估計對于各類信號處理非常重要.提齣一種譟聲方差估計的新方法,該方法首先應用兩狀態高斯混閤模型對高頻繫數建模,混閤模型的各項參數通過EM(Expectation-maximum)算法迭代估算得到.在建立的高斯混閤模型中,噹參數滿足一定條件時,可以將高頻繫數分為譟聲類和邊緣類.基于高頻子帶內繫數的相關性,對譟聲類所包含的繫數再次應用高斯混閤模型的方法分類,併在每箇類中分彆進行譟聲的估計,最後對所得譟聲信號計算方差作為原始信號的譟聲方差估計.基于這種估計方法,將小波閾值法應用到反求工程的降譟中,實際信號的降譟結果在光滑性和特徵保持方麵均有較好的效果.試驗錶明,該譟聲方差估計方法對譟聲大小具有一定適應性,且小波閾值降譟法簡單易行,應用廣汎.
신호중포함적조성불부강저료신호적질량,이차환엄중영향착각충상관처리산법적유효성,인차,고효은건적조성방차고계대우각류신호처리비상중요.제출일충조성방차고계적신방법,해방법수선응용량상태고사혼합모형대고빈계수건모,혼합모형적각항삼수통과EM(Expectation-maximum)산법질대고산득도.재건립적고사혼합모형중,당삼수만족일정조건시,가이장고빈계수분위조성류화변연류.기우고빈자대내계수적상관성,대조성류소포함적계수재차응용고사혼합모형적방법분류,병재매개류중분별진행조성적고계,최후대소득조성신호계산방차작위원시신호적조성방차고계.기우저충고계방법,장소파역치법응용도반구공정적강조중,실제신호적강조결과재광활성화특정보지방면균유교호적효과.시험표명,해조성방차고계방법대조성대소구유일정괄응성,차소파역치강조법간단역행,응용엄범.
Noise of signal not only reduces the quality of signal but also interferes the validity of correlative arithmetic seriously. Therefore, effective and robust estimation of noise variance is very important for various signal processing. A new method is proposed to estimate noise variance. A Gaussian mixture model (GMM) is used to model the high frequency wavelet coefficients (HFWC). The parameters of the mixture model are obtained with the EM iterative algorithm. The HFWC will be classified as noises class and edges class in the GMM when the parameters meet a certain condition. Based on the correlation among HFWC, GMM is used again to classify the coefficients of the noise as well as to take the noise estimation. Finally, the variance of noise signals is calculated and regarded as the noise variance estimation of original signal. Based on the estimation algorithm, wavelet threshold denoising is applied to reverse engineering. The denoising effect of practical signal is perfect in smoothness and feature preserving. The examination indicates that this estimation method of noise variance has certain adaptability to different noise, moreover, the denoising method of wavelet threshold can be simply achieved and applied in most situations.