北京理工大学学报
北京理工大學學報
북경리공대학학보
JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY
2009年
6期
510-514
,共5页
贺李平%顾亮%辛国国%李庆伟
賀李平%顧亮%辛國國%李慶偉
하리평%고량%신국국%리경위
环形阀片%大挠曲%摄动法%有限元法%曲线拟合
環形閥片%大撓麯%攝動法%有限元法%麯線擬閤
배형벌편%대뇨곡%섭동법%유한원법%곡선의합
annular throttle-slice%large deflection%perturbation method%finite element method%curve fitting
导出减振器环形阀片大挠曲变形的解析式. 针对环形薄板的von Kármán方程,基于钱氏摄动法,导出了减振器环形阀片刚度曲线方程. 建立了高精度的阀片有限元模型并进行数值实验,以求解出刚度曲线方程中的两个待定系数. 采用Lorentzian函数对系数进行非线性最小二乘分段拟合,从而得到环形阀片大挠曲变形的解析式. 经数值计算验证,该解析式具有较高的计算精度.
導齣減振器環形閥片大撓麯變形的解析式. 針對環形薄闆的von Kármán方程,基于錢氏攝動法,導齣瞭減振器環形閥片剛度麯線方程. 建立瞭高精度的閥片有限元模型併進行數值實驗,以求解齣剛度麯線方程中的兩箇待定繫數. 採用Lorentzian函數對繫數進行非線性最小二乘分段擬閤,從而得到環形閥片大撓麯變形的解析式. 經數值計算驗證,該解析式具有較高的計算精度.
도출감진기배형벌편대뇨곡변형적해석식. 침대배형박판적von Kármán방정,기우전씨섭동법,도출료감진기배형벌편강도곡선방정. 건립료고정도적벌편유한원모형병진행수치실험,이구해출강도곡선방정중적량개대정계수. 채용Lorentzian함수대계수진행비선성최소이승분단의합,종이득도배형벌편대뇨곡변형적해석식. 경수치계산험증,해해석식구유교고적계산정도.
To deduce the analytical formula of large deflection for annular throttle-slices in shock absorbers. Von Kármán equations of annular plate are used to derive the rigidity curve equation for annular throttle-slice in shock absorbers on the basis of Chien-perturbation method. To get the two undetermined coefficients in the rigidity curve equation, high-precision finite element model is set up and carried on numerical tests. For the purpose of getting the analytical formula of large deflection problem for annular throttle-slice, Lorentzian function is used to nonlinear least squares curve sub-fitting for the two coefficients. Numerical results showed that the analytical solution is highly precise.