工程地质学报
工程地質學報
공정지질학보
2010年
1期
120-126
,共7页
王杰%马凤山%徐嘉谟%丁德民%张亚民%郭捷%魏爱华%巩城城
王傑%馬鳳山%徐嘉謨%丁德民%張亞民%郭捷%魏愛華%鞏城城
왕걸%마봉산%서가모%정덕민%장아민%곽첩%위애화%공성성
边坡体%张应力%坡面位移%相关关系%数值模拟
邊坡體%張應力%坡麵位移%相關關繫%數值模擬
변파체%장응력%파면위이%상관관계%수치모의
Slope mass%Tensile stress%Displacements on slope surface%Correlations%Numerical modelling
为了提高对边坡体力学行为的认识,借助于FLAC有限差分软件的数值模拟,并结和相似理论的推导验证,研究了在仅有自重体积力作用的条件下,线弹性边坡体的一些力学特征及其与相关变量或物理力学参数的相关关系.没有外载荷影响时边坡地表最大主应力和最小主应力分别平行和垂直于地表,当深度增加时,主应力的取向逐渐变成竖直和水平两个方向,坡面处既有张应力区也有拉应力区,坡脚处亦存在较大的张应力,这是自重体积力作用下边坡体应力分布的一般性特征,在本文和前人的研究中都能体现.本文还重点揭露了:坡角线性增加时坡顶最大张应力的变化速率表现为:快--慢--快;沿坡顶面竖直向下张应力随深度增加线性减小;小变形条件下边坡应力场与弹性模量无关;最后验证了满足相似理论的坡体,坡面对应点的位移比是其几何尺寸比的平方倍.本文不仅是对既有研究成果的进一步补充,而且为以后研究复杂条件下边坡体的力学特征奠定了基础,对于理论和实践都有一定的启发意义.
為瞭提高對邊坡體力學行為的認識,藉助于FLAC有限差分軟件的數值模擬,併結和相似理論的推導驗證,研究瞭在僅有自重體積力作用的條件下,線彈性邊坡體的一些力學特徵及其與相關變量或物理力學參數的相關關繫.沒有外載荷影響時邊坡地錶最大主應力和最小主應力分彆平行和垂直于地錶,噹深度增加時,主應力的取嚮逐漸變成豎直和水平兩箇方嚮,坡麵處既有張應力區也有拉應力區,坡腳處亦存在較大的張應力,這是自重體積力作用下邊坡體應力分佈的一般性特徵,在本文和前人的研究中都能體現.本文還重點揭露瞭:坡角線性增加時坡頂最大張應力的變化速率錶現為:快--慢--快;沿坡頂麵豎直嚮下張應力隨深度增加線性減小;小變形條件下邊坡應力場與彈性模量無關;最後驗證瞭滿足相似理論的坡體,坡麵對應點的位移比是其幾何呎吋比的平方倍.本文不僅是對既有研究成果的進一步補充,而且為以後研究複雜條件下邊坡體的力學特徵奠定瞭基礎,對于理論和實踐都有一定的啟髮意義.
위료제고대변파체역학행위적인식,차조우FLAC유한차분연건적수치모의,병결화상사이론적추도험증,연구료재부유자중체적력작용적조건하,선탄성변파체적일사역학특정급기여상관변량혹물리역학삼수적상관관계.몰유외재하영향시변파지표최대주응력화최소주응력분별평행화수직우지표,당심도증가시,주응력적취향축점변성수직화수평량개방향,파면처기유장응력구야유랍응력구,파각처역존재교대적장응력,저시자중체적력작용하변파체응력분포적일반성특정,재본문화전인적연구중도능체현.본문환중점게로료:파각선성증가시파정최대장응력적변화속솔표현위:쾌--만--쾌;연파정면수직향하장응력수심도증가선성감소;소변형조건하변파응력장여탄성모량무관;최후험증료만족상사이론적파체,파면대응점적위이비시기궤하척촌비적평방배.본문불부시대기유연구성과적진일보보충,이차위이후연구복잡조건하변파체적역학특정전정료기출,대우이론화실천도유일정적계발의의.
To enhance understanding of the mechanism of slope stability,this paper investigates some of the mechanical characteristics of the slope mass only subjected to its self-weight body force.It uses the FLAC numerical simulation software and similarity law.It studies the relationships between them and the related physical or mechanical parameters.At the ground surface,the principal stresses must be either parallel or normal to the topography in the absence of surface loads.As the depth increases,the principal stress directions approach either vertical or horizontal.There are tensile stress and compressive stress at the slope surface.And the tensile stress in the toe of a slope is also very high.These are some general characteristics for the distribution of stresses in a slope,shown both in this paper or some other articles.This paper emphasizes that when the angle of a slope increases linearly,the changing velocity of maximum tensile stress on the top of the slope behaves fastly,then slowly and then fastly.Thetensile stress decreases linearly with the depth on a line from the top of the slope downward vertically to the inner of the slope.Under the condition of small deformation,the stress field does not depend on the Young's modulus value.When meeting the similarity law, the magnitudes of displacement ratios at the corresponding points are square times of their sizes'ratios of a slope. This paper complements to existing knowledge. It further offers a base for further studies on more complicated slopes. It is meaningful in both theory and practice.