中华小儿外科杂志
中華小兒外科雜誌
중화소인외과잡지
CHINESE JOURNAL OF PEDIATRIC SURGERY
2009年
9期
593-596
,共4页
孙琦%孙彦隽%万大伟%刘锦纷%洪海筏%王谦%刘应征%曹兆敏
孫琦%孫彥雋%萬大偉%劉錦紛%洪海筏%王謙%劉應徵%曹兆敏
손기%손언준%만대위%류금분%홍해벌%왕겸%류응정%조조민
计算流体力学%Fontan手术%虚拟手术%能量代谢
計算流體力學%Fontan手術%虛擬手術%能量代謝
계산류체역학%Fontan수술%허의수술%능량대사
Computational fluid dynamics%Fontan procedure%Virtual operation%Energy me-tabolism
目的 对双侧、双向Glenn术后患儿进行虚拟Fontan手术,并对不同设计方案的血管吻合区域内血流进行计算流体力学(computational fluid dynamics,CFD)模拟.方法 利用Mimics 12.0(R) 进行三维解剖重建,通过虚拟手术改变双侧上腔静脉与肺动脉的吻合位置,并将下腔静脉连接到肺动脉的不同位置.建立数值模型,对4种虚拟手术方案在不同左、右肺动脉流量分配比(30:70、40:60、50:50、60:40、70:30)情况下的血流进行CFD模拟.结果 当左、右上腔静脉与肺动脉吻合口之间距离较大且下腔静脉与肺动脉吻合口位于中间时,在各种左、右肺动脉流量分配比情况下能量消耗均较其他3种设计方案低,且在左、右肺动脉流量分配比为50:50时能量消耗达到最低值23.60 mW.结论 对患有左侧上腔静脉残存的患儿施行Fontan手术时,将左、右上腔静脉分别吻合于同侧肺动脉并将下腔静脉与肺动脉吻合口置于左、右上腔静脉与肺动脉吻合口中间的设计方案能量消耗最低.
目的 對雙側、雙嚮Glenn術後患兒進行虛擬Fontan手術,併對不同設計方案的血管吻閤區域內血流進行計算流體力學(computational fluid dynamics,CFD)模擬.方法 利用Mimics 12.0(R) 進行三維解剖重建,通過虛擬手術改變雙側上腔靜脈與肺動脈的吻閤位置,併將下腔靜脈連接到肺動脈的不同位置.建立數值模型,對4種虛擬手術方案在不同左、右肺動脈流量分配比(30:70、40:60、50:50、60:40、70:30)情況下的血流進行CFD模擬.結果 噹左、右上腔靜脈與肺動脈吻閤口之間距離較大且下腔靜脈與肺動脈吻閤口位于中間時,在各種左、右肺動脈流量分配比情況下能量消耗均較其他3種設計方案低,且在左、右肺動脈流量分配比為50:50時能量消耗達到最低值23.60 mW.結論 對患有左側上腔靜脈殘存的患兒施行Fontan手術時,將左、右上腔靜脈分彆吻閤于同側肺動脈併將下腔靜脈與肺動脈吻閤口置于左、右上腔靜脈與肺動脈吻閤口中間的設計方案能量消耗最低.
목적 대쌍측、쌍향Glenn술후환인진행허의Fontan수술,병대불동설계방안적혈관문합구역내혈류진행계산류체역학(computational fluid dynamics,CFD)모의.방법 이용Mimics 12.0(R) 진행삼유해부중건,통과허의수술개변쌍측상강정맥여폐동맥적문합위치,병장하강정맥련접도폐동맥적불동위치.건립수치모형,대4충허의수술방안재불동좌、우폐동맥류량분배비(30:70、40:60、50:50、60:40、70:30)정황하적혈류진행CFD모의.결과 당좌、우상강정맥여폐동맥문합구지간거리교대차하강정맥여폐동맥문합구위우중간시,재각충좌、우폐동맥류량분배비정황하능량소모균교기타3충설계방안저,차재좌、우폐동맥류량분배비위50:50시능량소모체도최저치23.60 mW.결론 대환유좌측상강정맥잔존적환인시행Fontan수술시,장좌、우상강정맥분별문합우동측폐동맥병장하강정맥여폐동맥문합구치우좌、우상강정맥여폐동맥문합구중간적설계방안능량소모최저.
Objective To perform the virtual Fontan operations on patients who had undergone the bilateral bidirectional Glenn procedure, and to simulate the blood flow in different types of opera-tive strategies by the method of computational fluid dynamics (CFD). Methods Three-dimensional re-construction was performed with Mimics 12. 0(R) according to the results of magnetic resonance imaging (MRI). Virtual operations were performed by changing the virtual anastomotic sites of bilateral supe-rior vena cava (SVC) and pulmonary arteries (PAs), and by connecting the inferior vena cava (IVC) to different sites of PAs. Numerical simulations were established to analyze the CFD of blood flows in patients undergoing 4 different types of virtual operative strategies at different predetermined flow split distribution ratios of left pulmonary artery (LPA) to right pulmonary artery (RPA) (at 30: 70,40 : 60, 50:50,60:40 and 70:30, respectively). Results When the distance between the anastomotic sites of the bilateral SVCs to the PAs was relatively long and the anastomotic site of IVC and PAs was in the middle of the SVC-PA anastomotic sites, the control volume power loss (CVPL) was lower than any other three operative strategies at all predetermined LPA/RPA flow split distribution ratios. The CV-PL achieved a minimal value of 23.60 mW at the ratio of 50/50. Conclusions For Fontan operations, it may be the optimal operative strategy to anastomose bilateral SVCs to the homolateral PA separately and to connect the IVC in the middle of the SVC-PA anastomotic sites.