宁波大学学报:理工版
寧波大學學報:理工版
저파대학학보:리공판
Journal of Ningbo University(Natural Science and Engineering Edition)
2011年
4期
36-40
,共5页
随机积分一微分方程%不动点定理%均方%渐近稳定%变时滞
隨機積分一微分方程%不動點定理%均方%漸近穩定%變時滯
수궤적분일미분방정%불동점정리%균방%점근은정%변시체
Stochastic integral-differential equation%fixed point theory%mean square%asymptotically stable%variable delay
研究具有变时滞r(t)的非线性随机积分一微分方程 dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0的解的稳定性问题,其中在X=0的某邻域内满足xg(·,x)〉0(x≠0).不仅使用不动点定理给出了方程解的均方渐近稳定的充分必要条件,同时给出了一个例子说明了主要结果.
研究具有變時滯r(t)的非線性隨機積分一微分方程 dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0的解的穩定性問題,其中在X=0的某鄰域內滿足xg(·,x)〉0(x≠0).不僅使用不動點定理給齣瞭方程解的均方漸近穩定的充分必要條件,同時給齣瞭一箇例子說明瞭主要結果.
연구구유변시체r(t)적비선성수궤적분일미분방정 dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0적해적은정성문제,기중재X=0적모린역내만족xg(·,x)〉0(x≠0).불부사용불동점정리급출료방정해적균방점근은정적충분필요조건,동시급출료일개례자설명료주요결과.
In this paper, the authors investigate the solution stability issues concerning nonlinear stochastic integral-differential equations given as dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0 with variable delay r(t), where xg(.,x) 〉 0(x ≠0) in a neighborhood of x = 0. Using the fixed point theorem, the sufficient and necessary conditions are given to ensure the solution of stochastic integral-differential equation to be mean square asymptotically stable. Meanwhile, one example is offered to help explain the obtained results.