光通信研究
光通信研究
광통신연구
STUDY ON OPTICAL COMMUNICATIONS
2010年
1期
8-10,14
,共4页
董传成%朱娜%孙万举%韩飞
董傳成%硃娜%孫萬舉%韓飛
동전성%주나%손만거%한비
带宽按需分配%自动交换光网络%神经网络%微粒群优化
帶寬按需分配%自動交換光網絡%神經網絡%微粒群優化
대관안수분배%자동교환광망락%신경망락%미립군우화
BoD%ASON%ANN%PSO
文章提出了微粒群优化的3层BP神经网络在线3步预测智能光网络带宽按需分配(BoD)业务流量模型,并改进了微粒群优化算法.对适应值较差的一部分微粒施加随机扰动,然后评估扰动效果,接受进化同时以一定概率接受退化.按3步预测中的最大值分配带宽,降低了突发业务阻塞率.仿真结果表明,该预测模型适应突发性、多样性BoD业务流量的在线预测.
文章提齣瞭微粒群優化的3層BP神經網絡在線3步預測智能光網絡帶寬按需分配(BoD)業務流量模型,併改進瞭微粒群優化算法.對適應值較差的一部分微粒施加隨機擾動,然後評估擾動效果,接受進化同時以一定概率接受退化.按3步預測中的最大值分配帶寬,降低瞭突髮業務阻塞率.倣真結果錶明,該預測模型適應突髮性、多樣性BoD業務流量的在線預測.
문장제출료미립군우화적3층BP신경망락재선3보예측지능광망락대관안수분배(BoD)업무류량모형,병개진료미립군우화산법.대괄응치교차적일부분미립시가수궤우동,연후평고우동효과,접수진화동시이일정개솔접수퇴화.안3보예측중적최대치분배대관,강저료돌발업무조새솔.방진결과표명,해예측모형괄응돌발성、다양성BoD업무류량적재선예측.
In this paper,a 3-layer PSO-trained BP Artificial Neural Networks (ANN) model is proposed for the on-line prediction of Bandwidth on Demand (BoD) ASON services and the Particle Swarm Optimization (PSO) algorithm improved. Particles with poor fitness are imposed with disturbances at random and then the disturbance effect is evaluated. The improved particles are accepted and at the same time the degenerated ones are also accepted in a certain probability. The maximum of the three predicted data is considered as the future bandwidth distribution,thus reducing the blocking rate of the bursting service. The simulation results show that this prediction model is appropriate for the on-line prediction of bursting and diversified BoD services.