地质学报(英文版)
地質學報(英文版)
지질학보(영문판)
ACTA GEOLOGICA SINICA
2008年
5期
975-981
,共7页
δ13C-δ18O Covariance: An Effective Indicator of Hydrological Closure for Lakes?
The correlation between the Δ13c and 18O in primary carbonates is affected by several factors such as hydrological balance, total CO2 concentrations, climatic condition and lake productivity.The influence of these factors on the Δ13c-δ18 correlation may be different on different time scales. In this paper, two different-type lakes in southwestern China, Lake Erhal and Lake Chenghai, are selected to investigate the influence of climatic pattern on the Δ13c-Δ18o correlation and to evaluate the reliability of the Δ13c-Δ18o covariance as an indicator of hydrological closure. The results show that there exists good correlation between the Δ13c and Δ18o in Lake Erhai (overflowing open lake) and inLake Chenghal (closed lake). This suggests that the Δ13c-Δ18o covariance may be not an effective indicator of hydrological closure for lakes, especially on short time scales. On the one hand, a hydrologically open lake may display covariant Δ13c and δ18 as a result of climatic influence. The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of the Δ13c-δ18 covariance in Lake Erhai and Lake Chenghal. On the other hand, a hydrologically closed lake unnecessarily displays covariant trends between Δ13c and δ18 because of the buffering effect of high CO2 concentration on the Δ13c shift in hyper-alkaline lakes. We should be the buffering feeect of high CO2 concentration on the 13Cshift in hyper-alkaline lakes.We should be prudent when we use the covariance between 13C and 18O to judge the hydrological closure of lake.