数学进展
數學進展
수학진전
ADVANCES IN MATHEMATICS
2003年
4期
473-480
,共8页
Littlewood-paley算子%交换子%BMO(Rn)%Hardy空间%弱Hardy空间
Littlewood-paley算子%交換子%BMO(Rn)%Hardy空間%弱Hardy空間
Littlewood-paley산자%교환자%BMO(Rn)%Hardy공간%약Hardy공간
Littlewood-Paley operator%commutator%BMO(Rn)%Hardy space%weak Hardyspace
设n/n+ε<p≤1,本文证明了Littlewood-Paley算子与BMO函数构成的交换子的(Hpb,Lp)-型有界性和(Hpb,∞,Lp,∞)-型有界性.
設n/n+ε<p≤1,本文證明瞭Littlewood-Paley算子與BMO函數構成的交換子的(Hpb,Lp)-型有界性和(Hpb,∞,Lp,∞)-型有界性.
설n/n+ε<p≤1,본문증명료Littlewood-Paley산자여BMO함수구성적교환자적(Hpb,Lp)-형유계성화(Hpb,∞,Lp,∞)-형유계성.
Let n/n+ε< p ≤ 1, in this paper, the (Hpb, Lp)-type and (Hpb,∞, Lp,∞)-type bound-edness for the commutators associated with the Littlewood-Paley operators and b ∈ BMO(Rn) areobtained, where Hpb and Hpb,∞ are, respectively, the variants of the standard Hardy spaces and weakHardy spaces.