电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2010年
1期
22-27
,共6页
李鹏%杨东武%王伟%郑飞
李鵬%楊東武%王偉%鄭飛
리붕%양동무%왕위%정비
面天线%机电耦合%优化模型%桁架结构
麵天線%機電耦閤%優化模型%桁架結構
면천선%궤전우합%우화모형%항가결구
Reflector antennas%Electromechanical coupling%Optimization model%Truss structure
该文针对桁架面天线结构优化设计中的机电分离问题,将天线表面的微小变形表示为口径场的相位变化,得到包含结构因素的天线远场耦合计算公式,通过实验验证了该耦合公式的有效性和正确性.利用该公式将电性能指标引入传统的天线结构优化中,建立了以天线重量或电性能为优化目标,以结构强度和多种电性能变化量为约束的机电耦合优化模型,可以在天线结构设计过程中直接考察天线的主要电性能(包括增益、副瓣、波瓣宽度、指向精度等),同时避免了单一使用天线面精度的预估电性能的不足.通过某8 m天线的仿真结果表明了该耦合优化模型的优点.
該文針對桁架麵天線結構優化設計中的機電分離問題,將天線錶麵的微小變形錶示為口徑場的相位變化,得到包含結構因素的天線遠場耦閤計算公式,通過實驗驗證瞭該耦閤公式的有效性和正確性.利用該公式將電性能指標引入傳統的天線結構優化中,建立瞭以天線重量或電性能為優化目標,以結構彊度和多種電性能變化量為約束的機電耦閤優化模型,可以在天線結構設計過程中直接攷察天線的主要電性能(包括增益、副瓣、波瓣寬度、指嚮精度等),同時避免瞭單一使用天線麵精度的預估電性能的不足.通過某8 m天線的倣真結果錶明瞭該耦閤優化模型的優點.
해문침대항가면천선결구우화설계중적궤전분리문제,장천선표면적미소변형표시위구경장적상위변화,득도포함결구인소적천선원장우합계산공식,통과실험험증료해우합공식적유효성화정학성.이용해공식장전성능지표인입전통적천선결구우화중,건립료이천선중량혹전성능위우화목표,이결구강도화다충전성능변화량위약속적궤전우합우화모형,가이재천선결구설계과정중직접고찰천선적주요전성능(포괄증익、부판、파판관도、지향정도등),동시피면료단일사용천선면정도적예고전성능적불족.통과모8 m천선적방진결과표명료해우합우화모형적우점.
for the problem of electromechanical in the optimization design of reflector antennas with truss support structures, microscopic distortion of reflector surface is introduced in the formula of antenna's far field patterns by phase difference, and the coupling formula of reflector antennas' far field patterns is given. Results of verification experiment show that the coupling formula is accurate and efficient. By the coupling formula, electrical parameter could be included in the antenna structure optimization design. A mechatronic optimization design model of reflector antennas with truss support structures is developed ,which adopts antenna weight or gain as the optimization objective, and the structure strength and various electrical parameters as constraint conditions. So the main electrical parameters(include gain, side lobe, beam width and pointing accuracy) could be considered during structure optimization design, and the limitation of estimate gain only by surface precision is conquered. Finally the proposed optimization model is applied to an 8 meters antenna with good results.