稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2010年
4期
750-752
,共3页
钨合金%面对等离子体材料%热负荷性能
鎢閤金%麵對等離子體材料%熱負荷性能
오합금%면대등리자체재료%열부하성능
tungsten alloys%plasma facing material%heat flux performance
利用机械合金化方法制备各种W-TiC合金,并通过主要物理性能测试发现:TiC的引入能有效强化晶界,提高合金材料的力学性能,特别是W-1%TiC(质量分数, 下同)合金,其相对密度、抗弯强度、维氏显微硬度和杨氏模量分别为98.4%、1065 MPa、4.33和396 GPa.同时电子束热负荷实验发现:在低于合金再结晶温度时,TiC能有效增强合金热负荷承受能力;然而较高的晶粒应变能导致合金材料在再结晶温度以上使用时,热负荷性能增强效果不明显.这些结果显示,约1%TiC弥散增强钨合金是较合适的托卡马克高热负荷面对等离子体材料.
利用機械閤金化方法製備各種W-TiC閤金,併通過主要物理性能測試髮現:TiC的引入能有效彊化晶界,提高閤金材料的力學性能,特彆是W-1%TiC(質量分數, 下同)閤金,其相對密度、抗彎彊度、維氏顯微硬度和楊氏模量分彆為98.4%、1065 MPa、4.33和396 GPa.同時電子束熱負荷實驗髮現:在低于閤金再結晶溫度時,TiC能有效增彊閤金熱負荷承受能力;然而較高的晶粒應變能導緻閤金材料在再結晶溫度以上使用時,熱負荷性能增彊效果不明顯.這些結果顯示,約1%TiC瀰散增彊鎢閤金是較閤適的託卡馬剋高熱負荷麵對等離子體材料.
이용궤계합금화방법제비각충W-TiC합금,병통과주요물이성능측시발현:TiC적인입능유효강화정계,제고합금재료적역학성능,특별시W-1%TiC(질량분수, 하동)합금,기상대밀도、항만강도、유씨현미경도화양씨모량분별위98.4%、1065 MPa、4.33화396 GPa.동시전자속열부하실험발현:재저우합금재결정온도시,TiC능유효증강합금열부하승수능력;연이교고적정립응변능도치합금재료재재결정온도이상사용시,열부하성능증강효과불명현.저사결과현시,약1%TiC미산증강오합금시교합괄적탁잡마극고열부하면대등리자체재료.
W-TiC alloys were prepared by means of the mechanical alloying method and their main physical properties were tested. It is found that TiC particle introduction can strengthen the grain boundary notably and enhance the mechanical properties of the alloys. Particularly, the relative density, flexural strength, Vickers microhardness and elastic modulus of W-1wt%TiC alloy is 98.4%, 1065 MPa, 4.33 and 396 GPa, respectively. Meanwhile, the electron-beam heat-flux test show that TiC particles can effectively improve the heat flux properties of W-TiC alloy below the re-crystallization temperature; however, when the alloy is used above the re-crystallization temperature due to the higher grain strain energy, the effect is not notable. Therefore, the results indicate W-1wt%TiC is the suitable plasma facing material as the heat flux material below the re-crystallization temperature.