湖南大学学报(自然科学版)
湖南大學學報(自然科學版)
호남대학학보(자연과학판)
JOURNAL OF HUNAN UNIVERSITY(NATURAL SCIENCES EDITION)
2009年
7期
41-45
,共5页
王珂娜%王耀南%鲁娟%张莹
王珂娜%王耀南%魯娟%張瑩
왕가나%왕요남%로연%장형
大输液杂质%检测识别%Camshift跟踪算法%SVM
大輸液雜質%檢測識彆%Camshift跟蹤算法%SVM
대수액잡질%검측식별%Camshift근종산법%SVM
impurity in transfusion solution%detection and recognition%Camshift tracing algorithm%SVM
针对我国医药生产检测包装线上大输液杂质智能检测技术问题,提出了一种利用实时视频图像处理技术检测识别大输液杂质的方法.该方法对连续多帧被旋转的大输液瓶图像运用差分图像运动分析方法提取目标杂质;运用图像处理技术去除气泡噪声,准确分割目标杂质,采用Camshift跟踪算法连续跟踪几帧运动杂质以确保检测准确率;根据Camshift跟踪算法提取出的杂质运动和几何特征,应用SVM(Support Vector Machine)准确识别杂质类型.实验结果表明,该方法检测识别直径大于等于4个像素的杂质的检测识别率平均可达到95.4%,检测识别速率平均可达到581 ms/瓶.
針對我國醫藥生產檢測包裝線上大輸液雜質智能檢測技術問題,提齣瞭一種利用實時視頻圖像處理技術檢測識彆大輸液雜質的方法.該方法對連續多幀被鏇轉的大輸液瓶圖像運用差分圖像運動分析方法提取目標雜質;運用圖像處理技術去除氣泡譟聲,準確分割目標雜質,採用Camshift跟蹤算法連續跟蹤幾幀運動雜質以確保檢測準確率;根據Camshift跟蹤算法提取齣的雜質運動和幾何特徵,應用SVM(Support Vector Machine)準確識彆雜質類型.實驗結果錶明,該方法檢測識彆直徑大于等于4箇像素的雜質的檢測識彆率平均可達到95.4%,檢測識彆速率平均可達到581 ms/瓶.
침대아국의약생산검측포장선상대수액잡질지능검측기술문제,제출료일충이용실시시빈도상처리기술검측식별대수액잡질적방법.해방법대련속다정피선전적대수액병도상운용차분도상운동분석방법제취목표잡질;운용도상처리기술거제기포조성,준학분할목표잡질,채용Camshift근종산법련속근종궤정운동잡질이학보검측준학솔;근거Camshift근종산법제취출적잡질운동화궤하특정,응용SVM(Support Vector Machine)준학식별잡질류형.실험결과표명,해방법검측식별직경대우등우4개상소적잡질적검측식별솔평균가체도95.4%,검측식별속솔평균가체도581 ms/병.
Considering that the intelligent detection and recognition of impurity in transfusion solution is a critically needed technology in pharmaceutical device production, a method for impurity detection and recognition using video image processing technology was proposed. Firstly, the impurity objects in several continuous rotated transfusion solution bottle frames were extracted cursorily by subtracting between two frames. Then, some image processing technologies were utilized to eliminate bubble noises and extract impurity objects accurately. And then, the Camshift tracing algorithm was adopted to trace the impurity to ensure the correct detection. Finally, Support Vector Machine was used to recognize the type of impurities with the extracted motion and geometrical features of impurities. Experiment results have shown that the mean detection and recognition rate is 95.4% for impurities equal and larger than four pixels in diameter. Mean detection and recognition time is 581ms for one transfusion solution bottle.