催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2010年
4期
415-422
,共8页
邢双英%周丹红%曹亮%李新
邢雙英%週丹紅%曹亮%李新
형쌍영%주단홍%조량%리신
密度泛函理论%碳化钼%ZSM-5分子筛%甲烷%活化能
密度汎函理論%碳化鉬%ZSM-5分子篩%甲烷%活化能
밀도범함이론%탄화목%ZSM-5분자사%갑완%활화능
density functional theory%molybdenum carbide%ZSM-5 zeolite%methane%activation energy
应用密度泛函理论(DFT)研究了Mo/HZSM-5分子筛上碳化钼活性中心的几何结构和电子结构,以及甲烷C-H键在该活性中心上的活化机理.设计了两种碳化钼单体模型Mo(CH_2)_2/ZSM-5和Mo(CH_2)_2CH_3/ZSM-5,两种碳化钼双体模型Mo_2(CH_2)_4/ZSM-5和Mo_2(CH_2)_5/ZSM-5.其中单钼模型构建在ZSM-5分子筛孔道交叉点T6位的Br(o)nsted酸位上,双钼模型构建在T6-T6相邻双酸位上.这些模型中都有Mo=CH_2键,结构优化后得到的Mo-C键长与实验值吻合.所有模型的前线分子轨道都在Mo=CH_2的π键上.甲烷活化过程是发生C-H键异裂,H~+和H_3C~-残基分别进攻Mo=CH_2键的c和Mo,使π键同时断裂.在以上4种碳化铝模型上,甲烷C-H键活化能都在106~196kJ/mol,且Mo_2(CH_2)_5/ZSM-5在甲烷活化过程中显示出最高的催化活性.
應用密度汎函理論(DFT)研究瞭Mo/HZSM-5分子篩上碳化鉬活性中心的幾何結構和電子結構,以及甲烷C-H鍵在該活性中心上的活化機理.設計瞭兩種碳化鉬單體模型Mo(CH_2)_2/ZSM-5和Mo(CH_2)_2CH_3/ZSM-5,兩種碳化鉬雙體模型Mo_2(CH_2)_4/ZSM-5和Mo_2(CH_2)_5/ZSM-5.其中單鉬模型構建在ZSM-5分子篩孔道交扠點T6位的Br(o)nsted痠位上,雙鉬模型構建在T6-T6相鄰雙痠位上.這些模型中都有Mo=CH_2鍵,結構優化後得到的Mo-C鍵長與實驗值吻閤.所有模型的前線分子軌道都在Mo=CH_2的π鍵上.甲烷活化過程是髮生C-H鍵異裂,H~+和H_3C~-殘基分彆進攻Mo=CH_2鍵的c和Mo,使π鍵同時斷裂.在以上4種碳化鋁模型上,甲烷C-H鍵活化能都在106~196kJ/mol,且Mo_2(CH_2)_5/ZSM-5在甲烷活化過程中顯示齣最高的催化活性.
응용밀도범함이론(DFT)연구료Mo/HZSM-5분자사상탄화목활성중심적궤하결구화전자결구,이급갑완C-H건재해활성중심상적활화궤리.설계료량충탄화목단체모형Mo(CH_2)_2/ZSM-5화Mo(CH_2)_2CH_3/ZSM-5,량충탄화목쌍체모형Mo_2(CH_2)_4/ZSM-5화Mo_2(CH_2)_5/ZSM-5.기중단목모형구건재ZSM-5분자사공도교차점T6위적Br(o)nsted산위상,쌍목모형구건재T6-T6상린쌍산위상.저사모형중도유Mo=CH_2건,결구우화후득도적Mo-C건장여실험치문합.소유모형적전선분자궤도도재Mo=CH_2적π건상.갑완활화과정시발생C-H건이렬,H~+화H_3C~-잔기분별진공Mo=CH_2건적c화Mo,사π건동시단렬.재이상4충탄화려모형상,갑완C-H건활화능도재106~196kJ/mol,차Mo_2(CH_2)_5/ZSM-5재갑완활화과정중현시출최고적최화활성.
Density functional theory (DFT) calculation was employed to investigate the geometric and electronic structure of molybdenum carbide loaded on ZSM-5 zeolite and the catalytic mechanism for methane C-H bond dissociation. Four active center models of the monomer and dimer models were proposed, which were Mo(CH_2)_2/ZSM-5, Mo(CH_2)_2CH_3/ZSM-5, Mo_2(CH_2)_4/ZSM-5, and Mo_2(CH_2)_5/ZSM-5. The monomer model was located at the Bronsted acid site of the T6 site positioned at the intersection of the channels of ZSM-5 zeolite. The dimer model was constructed at the T6---6 Br(o)nsted acid sites. Mo-carbene, in the form of Mo=CH_2, was formed in both the monomer and dimer models, and the optimized bond length of Mo-C was in reasonably good agreement with the corresponding experimental value. The frontier molecular orbitals in the active center were assigned to the p orbitals of the Mo=CH_2 bonds in all four models. The catalytic activity of the Mo carbide active centers was investigated. It was found that the C-H bond of methane was heterogeneously dissociated with the H~+ and the H_3C~- moiety bonded on the C and Mo atoms of the Mo=CH_2 bond, respectively, and the p bond was broken simultaneously. The calculated activation energy of the methane C-H bond in the four models was between 106 and 196 kJ/mol. The Mo_2(CH_2)_5/ZSM-5 model showed the highest activity for methane C-H bond dissociation.