催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2009年
12期
1269-1275
,共7页
甲烷%解离%钯%氧原子改性%密度泛函理论%广义梯度近似%平板模型
甲烷%解離%鈀%氧原子改性%密度汎函理論%廣義梯度近似%平闆模型
갑완%해리%파%양원자개성%밀도범함이론%엄의제도근사%평판모형
methane%decomposition%palladium%oxygen atom modification%density functional theory%generalized gradient approximation%slab model
采用广义梯度近似(GGA)的密度泛函理论(DFT)并结合平板模型,研究了CH_4在清洁Pd(111)及O改性的Pd(111)表面发生C-H键断裂的反应历程.优化了裂解过程中反应物、过渡态和产物的几何构型,获得了反应路径上各物种的吸附能及反应的活化能.结果表明,CH_4采用一个H原子指向表面的构型在Pd(111)表而的顶位吸附,CH_3的最稳定的吸附位置为顶位,OH,O和H的最稳定吸附位置均为面心立方.CH_4在清洁Pd(111)表面裂解的活化能为0.97eV,低于它在O原子改性(O没有参与反应)的Pd(111)表面的活化能1.42eV,说明表面氧原子抑制了CH_4中C-H键的断裂.当亚表而O原子和表面O原子(O参与反应)共同存在时,C-H键断裂的活化能为O.72eV,低于只有表层氧存在时的活化能(1.43 eV),说明亚表面的O原子对CH_4分子的活化具有促进作用.CH_4在O原子改性的Pd(111)表面裂解牛成CH_3和H,以及生成CH_3和OH的反应活化能分别为1.42和1.43 eV,说明CH_4在O原子改性的Pd(111)表面发生这两种反应的难易稗度相当.
採用廣義梯度近似(GGA)的密度汎函理論(DFT)併結閤平闆模型,研究瞭CH_4在清潔Pd(111)及O改性的Pd(111)錶麵髮生C-H鍵斷裂的反應歷程.優化瞭裂解過程中反應物、過渡態和產物的幾何構型,穫得瞭反應路徑上各物種的吸附能及反應的活化能.結果錶明,CH_4採用一箇H原子指嚮錶麵的構型在Pd(111)錶而的頂位吸附,CH_3的最穩定的吸附位置為頂位,OH,O和H的最穩定吸附位置均為麵心立方.CH_4在清潔Pd(111)錶麵裂解的活化能為0.97eV,低于它在O原子改性(O沒有參與反應)的Pd(111)錶麵的活化能1.42eV,說明錶麵氧原子抑製瞭CH_4中C-H鍵的斷裂.噹亞錶而O原子和錶麵O原子(O參與反應)共同存在時,C-H鍵斷裂的活化能為O.72eV,低于隻有錶層氧存在時的活化能(1.43 eV),說明亞錶麵的O原子對CH_4分子的活化具有促進作用.CH_4在O原子改性的Pd(111)錶麵裂解牛成CH_3和H,以及生成CH_3和OH的反應活化能分彆為1.42和1.43 eV,說明CH_4在O原子改性的Pd(111)錶麵髮生這兩種反應的難易稗度相噹.
채용엄의제도근사(GGA)적밀도범함이론(DFT)병결합평판모형,연구료CH_4재청길Pd(111)급O개성적Pd(111)표면발생C-H건단렬적반응역정.우화료렬해과정중반응물、과도태화산물적궤하구형,획득료반응로경상각물충적흡부능급반응적활화능.결과표명,CH_4채용일개H원자지향표면적구형재Pd(111)표이적정위흡부,CH_3적최은정적흡부위치위정위,OH,O화H적최은정흡부위치균위면심립방.CH_4재청길Pd(111)표면렬해적활화능위0.97eV,저우타재O원자개성(O몰유삼여반응)적Pd(111)표면적활화능1.42eV,설명표면양원자억제료CH_4중C-H건적단렬.당아표이O원자화표면O원자(O삼여반응)공동존재시,C-H건단렬적활화능위O.72eV,저우지유표층양존재시적활화능(1.43 eV),설명아표면적O원자대CH_4분자적활화구유촉진작용.CH_4재O원자개성적Pd(111)표면렬해우성CH_3화H,이급생성CH_3화OH적반응활화능분별위1.42화1.43 eV,설명CH_4재O원자개성적Pd(111)표면발생저량충반응적난역패도상당.
The reaction pathway of C-H bond breaking of methane on the clean Pd(111)and O-modified Pd(111)surfaces was investigated by the fwst-principles density functional theory generalized gradient approximation calculations with the slab model.Geometries of reacrants,transition states,and products were calculated.Adsorption energy of possible species and activation energy barriers of the reaction were also obrained.The calculated results show that methane favors such a configuration that one hydrogen points towards the surface in the top site.Methyl is adsorbed in the top site,and hydroxyl,oxygen,and hydrogen are all adsorbed in the fee site.On the clean Pd(111)surface,the activation energy of 0.97 eV is smaller than that of 1.42 eV in the case ofoxygen-modified(oxygen atom acts as a"spectator")Pd(111) surface.which indicates that the presence of oxygen atom inhibited the C-H bond cleavage.Compared with the case that only the surface oxygen atom exists(oxygen atom participates in the reaction),the activation energy decreased from 1.43 to 0.72 eV when the subsurfaceoxygen atom exists.This suggests that the subsurface oxygen atom promotes the activation of methane molecule.On the oxygen-modifiedPd(111),the activation energy of the reactions forming methyl and hydrogen,and methyl and hydroxyl is 1.42 and 1.43 eV,respectively,which indicates that the reaction possibility is equivalent.