四川师范大学学报(自然科学版)
四川師範大學學報(自然科學版)
사천사범대학학보(자연과학판)
JOURNAL OF SICHUAN NORMAL UNIVERSITY(Natural Science)
2010年
1期
10-11
,共2页
ω-链%0-直并%Munn半群%0-双单同余
ω-鏈%0-直併%Munn半群%0-雙單同餘
ω-련%0-직병%Munn반군%0-쌍단동여
ω-chain%0-direct union%munn semigroup%0-bisimple congruence
给出了ω-链族{E_i|i∈I}的0-直并E=∪_(i∈I)E_i∪{0}的Munn半群T_E的结构, 刻画了它的同余格C(T_E). 证明了它的所有非平凡非泛同余都是0-双单同余,在包含关系下形成一个与正整数在整除关系下反同构的格.
給齣瞭ω-鏈族{E_i|i∈I}的0-直併E=∪_(i∈I)E_i∪{0}的Munn半群T_E的結構, 刻畫瞭它的同餘格C(T_E). 證明瞭它的所有非平凡非汎同餘都是0-雙單同餘,在包含關繫下形成一箇與正整數在整除關繫下反同構的格.
급출료ω-련족{E_i|i∈I}적0-직병E=∪_(i∈I)E_i∪{0}적Munn반군T_E적결구, 각화료타적동여격C(T_E). 증명료타적소유비평범비범동여도시0-쌍단동여,재포함관계하형성일개여정정수재정제관계하반동구적격.
In this paper, the structure of the Munn semigroup T_E for a 0-direct union E of ω-chains {E_i|i∈I} is given, the congruence lattice C(T_E) is described. It is proved that all nontrivial and nonuniversal congruences are all 0-bisimple congruences and they form a lattice under inclusion anti-isomorphic to that of all positive integral numbers under division.