计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2007年
12期
1617-1621
,共5页
王丽%陆文聪%陆瑾%杨善升
王麗%陸文聰%陸瑾%楊善升
왕려%륙문총%륙근%양선승
定量结构性质关系%支持向量机%麻醉药毒性
定量結構性質關繫%支持嚮量機%痳醉藥毒性
정량결구성질관계%지지향량궤%마취약독성
Quantitative structure-property relationships%Support vector regression%narcotic toxicity
采用支持向量机回归(SVR)方法研究了39个麻醉药毒性的定量构效关系,基于留一法交叉验证的结果,模型的相关系数为0.970.结果表明,所建SVR模型的精度高于逆传播人工神经网络(BPANN)、多元线性回归(MLR)和偏最小二乘法(PLS)所得的结果.
採用支持嚮量機迴歸(SVR)方法研究瞭39箇痳醉藥毒性的定量構效關繫,基于留一法交扠驗證的結果,模型的相關繫數為0.970.結果錶明,所建SVR模型的精度高于逆傳播人工神經網絡(BPANN)、多元線性迴歸(MLR)和偏最小二乘法(PLS)所得的結果.
채용지지향량궤회귀(SVR)방법연구료39개마취약독성적정량구효관계,기우류일법교차험증적결과,모형적상관계수위0.970.결과표명,소건SVR모형적정도고우역전파인공신경망락(BPANN)、다원선성회귀(MLR)화편최소이승법(PLS)소득적결과.
A quantitative structure-property relationships (QSPR) study based on support vector regression (SVR) for the toxicities (pEC50) of 39 narcotics was performed. SVR method with leave-one-out cross-validation was used for evaluating the regression models. The correlation coefficient obtained by the models was 0.970. The result showed that the prediction accuracy of SVR model was higher than those of back propagation artificial neural network (BP ANN), multiple linear regression (MLR) and partial least squares (PLS) methods.