舰船电子工程
艦船電子工程
함선전자공정
SHIP ELECTRONIC ENGINEERING
2012年
1期
31-32,50
,共3页
无味卡尔曼滤波%简单粒子滤波%无味粒子滤波%非线性%目标跟踪
無味卡爾曼濾波%簡單粒子濾波%無味粒子濾波%非線性%目標跟蹤
무미잡이만려파%간단입자려파%무미입자려파%비선성%목표근종
unscented Kalman filter%particle filter%unscented particle filter%nonlinear%target tracking
在处理目标跟踪等动态系统实时估计问题中,通常采用EKF作为状态估计方法提高估计精度。由于EKF进行非线性估计存在一些缺陷,将系统进行线性化近似存在估计误差,从而影响目标跟踪的精度。为了获得更高的估计精度,介绍了几种非线性滤波算法,包括unscented卡尔曼滤波算法、简单粒子滤波算法以及无味粒子滤波算法(UPF)。分析了这几种算法的原理和实现,对各种算法的适应性进行了比较。通过目标跟踪仿真实验,表明UKF、PF较EKF估计精度和收敛速度有所提高。
在處理目標跟蹤等動態繫統實時估計問題中,通常採用EKF作為狀態估計方法提高估計精度。由于EKF進行非線性估計存在一些缺陷,將繫統進行線性化近似存在估計誤差,從而影響目標跟蹤的精度。為瞭穫得更高的估計精度,介紹瞭幾種非線性濾波算法,包括unscented卡爾曼濾波算法、簡單粒子濾波算法以及無味粒子濾波算法(UPF)。分析瞭這幾種算法的原理和實現,對各種算法的適應性進行瞭比較。通過目標跟蹤倣真實驗,錶明UKF、PF較EKF估計精度和收斂速度有所提高。
재처리목표근종등동태계통실시고계문제중,통상채용EKF작위상태고계방법제고고계정도。유우EKF진행비선성고계존재일사결함,장계통진행선성화근사존재고계오차,종이영향목표근종적정도。위료획득경고적고계정도,개소료궤충비선성려파산법,포괄unscented잡이만려파산법、간단입자려파산법이급무미입자려파산법(UPF)。분석료저궤충산법적원리화실현,대각충산법적괄응성진행료비교。통과목표근종방진실험,표명UKF、PF교EKF고계정도화수렴속도유소제고。
In dealing with real-time estimation of dynamic system,such as target tracking.The extended Kalman filter(EKF) is used as a state estimation method to improve the estimation accuracy.However,there is estimation error in linearizing system due to the defects of EKF in nonlinear estimation,which affects the accuracy of target tracking.Three new nonlinear filter algorithms are presented in order to yield higher estimation accuracy.The three methods are unscented Kalman filter(UKF) and particle filter(PF) and UPF.the algorithms are analyzed.The applications of the algorithms to the state estimation models are compared.Finally,the algorithms are compared through a tracking model simulation.Experiment results show that the proposed algorithms outperforms EKF at convergence speed,consistency and tracking precision.