中华放射学杂志
中華放射學雜誌
중화방사학잡지
Chinese Journal of Radiology
2011年
8期
740-742
,共3页
惠萍%王新江%崔志鹏%孙红%李天文%姚洪祥%曹会志
惠萍%王新江%崔誌鵬%孫紅%李天文%姚洪祥%曹會誌
혜평%왕신강%최지붕%손홍%리천문%요홍상%조회지
体层摄影术,X线计算机%移植物%金属
體層攝影術,X線計算機%移植物%金屬
체층섭영술,X선계산궤%이식물%금속
Tomography,X-ray computed%Transplants%Metals
目的 探讨CT能谱成像(GSI)中单能量图像消除金属移植物硬化伪影的作用.方法 对体内有金属移植物的患者行GSI.其中义齿3例、颈椎钢板植入2例、锁骨钢板植入1例、腰椎金属棒植入1例、人工股骨头3例、髂骨骨折移植物1例、胫骨钢板植入1例.对上述部位行GSI螺旋扫描,管电压采用80 kVp和140 kVp,在0.5 ms内行快速切换扫描.然后重建1.25 mm层厚能谱图像,含40~140 keV共101个单能图像,不同keV单能图像均采用同样的窗宽(1500 HU)、窗位(500HU).测量不同keV单能量图像的伪影指数(AI),分析不同单能量图像伪影消除程度,将AI最小的单能keV图像保存,应用于三维重组.结果 单能图像中AI随keV变化而不同,12例中最大AI为145~225,均在40keV时出现;最小AI为15~190,出现在95~140 keV之间.重组图像时,12例常规的混合能量图像均有明显的金属伪影,用最小AI的单能量图像重建时,可明显肖除或降低金属移植物的硬化伪影.结论 采用CT能谱成像技术,在高keV单能量图像上可以明显降低或消除金属移植物伪影,改善图像质量.
目的 探討CT能譜成像(GSI)中單能量圖像消除金屬移植物硬化偽影的作用.方法 對體內有金屬移植物的患者行GSI.其中義齒3例、頸椎鋼闆植入2例、鎖骨鋼闆植入1例、腰椎金屬棒植入1例、人工股骨頭3例、髂骨骨摺移植物1例、脛骨鋼闆植入1例.對上述部位行GSI螺鏇掃描,管電壓採用80 kVp和140 kVp,在0.5 ms內行快速切換掃描.然後重建1.25 mm層厚能譜圖像,含40~140 keV共101箇單能圖像,不同keV單能圖像均採用同樣的窗寬(1500 HU)、窗位(500HU).測量不同keV單能量圖像的偽影指數(AI),分析不同單能量圖像偽影消除程度,將AI最小的單能keV圖像保存,應用于三維重組.結果 單能圖像中AI隨keV變化而不同,12例中最大AI為145~225,均在40keV時齣現;最小AI為15~190,齣現在95~140 keV之間.重組圖像時,12例常規的混閤能量圖像均有明顯的金屬偽影,用最小AI的單能量圖像重建時,可明顯肖除或降低金屬移植物的硬化偽影.結論 採用CT能譜成像技術,在高keV單能量圖像上可以明顯降低或消除金屬移植物偽影,改善圖像質量.
목적 탐토CT능보성상(GSI)중단능량도상소제금속이식물경화위영적작용.방법 대체내유금속이식물적환자행GSI.기중의치3례、경추강판식입2례、쇄골강판식입1례、요추금속봉식입1례、인공고골두3례、가골골절이식물1례、경골강판식입1례.대상술부위행GSI라선소묘,관전압채용80 kVp화140 kVp,재0.5 ms내행쾌속절환소묘.연후중건1.25 mm층후능보도상,함40~140 keV공101개단능도상,불동keV단능도상균채용동양적창관(1500 HU)、창위(500HU).측량불동keV단능량도상적위영지수(AI),분석불동단능량도상위영소제정도,장AI최소적단능keV도상보존,응용우삼유중조.결과 단능도상중AI수keV변화이불동,12례중최대AI위145~225,균재40keV시출현;최소AI위15~190,출현재95~140 keV지간.중조도상시,12례상규적혼합능량도상균유명현적금속위영,용최소AI적단능량도상중건시,가명현초제혹강저금속이식물적경화위영.결론 채용CT능보성상기술,재고keV단능량도상상가이명현강저혹소제금속이식물위영,개선도상질량.
Objective To assess the capability of monochromatic energy images of Gemstone spectral imaging(GSI) in reducing artifacts caused by metallic implants. Methods Twelve subjects with metallic implants underwent GSI (Discovery CT750 HD, GE Healthcare, Milwaukee ). The metallic orthopedic implants included 3 patients of dentures, 2 patients of cervical spinal vertebraplasty, one clavicle fracture fixation, one lumbar spinal vertehraplasty, 3 patients of artificial femoral head, one iliac fracture fixation and one tibial fracture fixation. GSI was performed by using a single source ultra-fast dual energy X-ray switching (80 kVp and 140 kVp). Following GSI scanning, thin slice images were reconstructed into 1.25 mm slice thickness. The monochromatic energy images were set to the same window width and level (window width 1500 HU,window level 500 HU). The artifact indexes (AI) at different kiloelectronvolts (keV) images were measured and compared. 3D reconstruction was performed using images with minimal AI. Result The artifacts index on monochromatic energy images varied with the change of keV. Of the images from 12 subjects, the maximal AI ranged between 145-225 at 40 keV, and minimal AI ranged between 15-90 at the 95-140 keV. The artifacts are clearly visible on polychromatic energy images and the artifacts are reduced markedly on the monochromatic energy images with minimal AI. Conclusion The artifacts caused by metallic implants can be reduced significantly by GSI with high keV monochromatic energy images.