计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2010年
1期
143-145,149
,共4页
支持向量机%超平面%核函数%手写体汉字识别
支持嚮量機%超平麵%覈函數%手寫體漢字識彆
지지향량궤%초평면%핵함수%수사체한자식별
Support Vector Machine (SVM)%hyperplane%kernel function%handwritten Chinese character recognition
针对支持向量机的多分类问题,提出一种新颖的基于非平行超平面的多分类簇支持向量机.它针对k模式分类问题分别训练产生k个分割超平面,每个超平面尽量靠近自身类模式而远离剩余类模式;决策时,新样本的类别由它距离最近的超平面所属的类决定,克服了一对一(OAO)和一对多(OAA)等传统方法存在的"决策盲区"和"类别不平衡"等缺陷.基于UCI和HCL2000数据集的实验表明,新方法在处理多分类问题时,识别精度显著优于传统多分类支持向量机方法.
針對支持嚮量機的多分類問題,提齣一種新穎的基于非平行超平麵的多分類簇支持嚮量機.它針對k模式分類問題分彆訓練產生k箇分割超平麵,每箇超平麵儘量靠近自身類模式而遠離剩餘類模式;決策時,新樣本的類彆由它距離最近的超平麵所屬的類決定,剋服瞭一對一(OAO)和一對多(OAA)等傳統方法存在的"決策盲區"和"類彆不平衡"等缺陷.基于UCI和HCL2000數據集的實驗錶明,新方法在處理多分類問題時,識彆精度顯著優于傳統多分類支持嚮量機方法.
침대지지향량궤적다분류문제,제출일충신영적기우비평행초평면적다분류족지지향량궤.타침대k모식분류문제분별훈련산생k개분할초평면,매개초평면진량고근자신류모식이원리잉여류모식;결책시,신양본적유별유타거리최근적초평면소속적류결정,극복료일대일(OAO)화일대다(OAA)등전통방법존재적"결책맹구"화"유별불평형"등결함.기우UCI화HCL2000수거집적실험표명,신방법재처리다분류문제시,식별정도현저우우전통다분류지지향량궤방법.
Based on the idea of nonparallel hyperplanes,a novel multi-class cluster support vector machine method was proposed to settle the multi-class classification problem of support vector machines. For a k-class classification problem,it trained k-hyperplanes respectively,and each one lay as close as possible to self-class while being apart from the rest classes as far as possible. Then,labels of new samples were determined by the class of their nearest hyperplane,thus the inherent limitations of One-Against-One (OAO) and One-Against-All (OAA) methods can be avoided,such as "decision blind-area" and "unbalanced classes". Finally,experiments on UCI and HCL2000 datasets show that the proposed method significantly outperforms traditional OAO and OAA in terms of recognition accuracy.