水动力学研究与进展A辑
水動力學研究與進展A輯
수동역학연구여진전A집
JOURNAL OF HYDRODYNAMICS
2010年
2期
206-216
,共11页
高光耀%冯绍元%马英%詹红兵%黄冠华
高光耀%馮紹元%馬英%詹紅兵%黃冠華
고광요%풍소원%마영%첨홍병%황관화
弥散尺度效应%不动水体%两区模型%反应性溶质%半解析解
瀰散呎度效應%不動水體%兩區模型%反應性溶質%半解析解
미산척도효응%불동수체%량구모형%반응성용질%반해석해
scale-dependent dispersion%immobile water%two-region model%reactive solute%semi-analytical solution
将弥散度概化为运移距离的渐进函数,并考虑土壤孔隙中存在的不动水体以及溶质的吸附和降解,建立了考虑弥散尺度效应的溶质运移两区模型(TRMS, Two-Region Model with Scale-dependent Dispersion),通过Laplace变换和de Hoog数值反演方法求得了模型的半解析解,并运用混合拉普拉斯变换有限差分法验证了半解析解的准确性.通过TRMS与弥散度为常数的两区模型(TRMC, Two-Region Model with Constant Dispersion)之间的比较,分析了弥散尺度效应对溶质运移过程的影响,并利用算术平均方法计算了TRMS的等效弥散度,最后应用TRMS和TRMC模拟了长度为1250cm的一维非均质土柱中的溶质运移过程.结果表明:TRMS的等效弥散度反映了弥散尺度效应的影响,可以近似作为区域弥散度的平均值,采用等效弥散度时,TRMC描述的穿透曲线与TRMS的模拟结果基本一致;TRMC的模拟结果与非均质长土柱的浓度实测值存在较大偏差,而TRMS的模拟精度有了较大程度的提高,能够更好地模拟非均质长土柱中溶质的不规则运移过程,说明本文建立的TRMS能够较好地模拟非均质介质中溶质在较大尺度上的运移过程.
將瀰散度概化為運移距離的漸進函數,併攷慮土壤孔隙中存在的不動水體以及溶質的吸附和降解,建立瞭攷慮瀰散呎度效應的溶質運移兩區模型(TRMS, Two-Region Model with Scale-dependent Dispersion),通過Laplace變換和de Hoog數值反縯方法求得瞭模型的半解析解,併運用混閤拉普拉斯變換有限差分法驗證瞭半解析解的準確性.通過TRMS與瀰散度為常數的兩區模型(TRMC, Two-Region Model with Constant Dispersion)之間的比較,分析瞭瀰散呎度效應對溶質運移過程的影響,併利用算術平均方法計算瞭TRMS的等效瀰散度,最後應用TRMS和TRMC模擬瞭長度為1250cm的一維非均質土柱中的溶質運移過程.結果錶明:TRMS的等效瀰散度反映瞭瀰散呎度效應的影響,可以近似作為區域瀰散度的平均值,採用等效瀰散度時,TRMC描述的穿透麯線與TRMS的模擬結果基本一緻;TRMC的模擬結果與非均質長土柱的濃度實測值存在較大偏差,而TRMS的模擬精度有瞭較大程度的提高,能夠更好地模擬非均質長土柱中溶質的不規則運移過程,說明本文建立的TRMS能夠較好地模擬非均質介質中溶質在較大呎度上的運移過程.
장미산도개화위운이거리적점진함수,병고필토양공극중존재적불동수체이급용질적흡부화강해,건립료고필미산척도효응적용질운이량구모형(TRMS, Two-Region Model with Scale-dependent Dispersion),통과Laplace변환화de Hoog수치반연방법구득료모형적반해석해,병운용혼합랍보랍사변환유한차분법험증료반해석해적준학성.통과TRMS여미산도위상수적량구모형(TRMC, Two-Region Model with Constant Dispersion)지간적비교,분석료미산척도효응대용질운이과정적영향,병이용산술평균방법계산료TRMS적등효미산도,최후응용TRMS화TRMC모의료장도위1250cm적일유비균질토주중적용질운이과정.결과표명:TRMS적등효미산도반영료미산척도효응적영향,가이근사작위구역미산도적평균치,채용등효미산도시,TRMC묘술적천투곡선여TRMS적모의결과기본일치;TRMC적모의결과여비균질장토주적농도실측치존재교대편차,이TRMS적모의정도유료교대정도적제고,능구경호지모의비균질장토주중용질적불규칙운이과정,설명본문건립적TRMS능구교호지모의비균질개질중용질재교대척도상적운이과정.
This study proposed a novel two-region model with scale-dependent dispersion (TRMS) to describe reactive solute transport in heterogeneous soils. The model was derived from the conventional TRM but assumed the dispersivity to be an asymptotic function of travel distance, considering the linear adsorption and first-order degradation of solute. The Laplace transform technique and de Hoog numerical inversion method were applied to solve the proposed model. The accuracy of semi-analytical solution was verified by a hybrid Laplace transform finite difference method. The TRMS and the two-region model with constant dispersion (TRMC) were compared to interpret the effect of scale-dependent dispersion, and the effective dispersivity for TRMS was calculated by averaging the distance-dependent dispersivity with arithmetic method. This effective dispersivity could reflect the accumulated scale-dependent dispersion effect over the entire travel domain. The TRMC with effective dispersivity could produce nearly similar breakthrough curves (BTCs) as those from TRMS. The applicability of TRMS was tested with concentration data from a 1,250-cm long and highly heterogeneous soil column. The simulation results indicated that the TRMC was unable to adequately describe the measured BTCs in the column, while the TRMS satisfactorily captured the evolution of BTCs. Therefore, this study suggests that the proposed TRMS is a simple and practical approach to describe solute transport at relatively large scale in heterogeneous porous media.