纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2010年
3期
245-250
,共6页
徐溢%梁静%胡小国%马亮波%温志渝
徐溢%樑靜%鬍小國%馬亮波%溫誌渝
서일%량정%호소국%마량파%온지투
微流控芯片%MEMS技术%低电压芯片电泳%电极阵列
微流控芯片%MEMS技術%低電壓芯片電泳%電極陣列
미류공심편%MEMS기술%저전압심편전영%전겁진렬
microfluidic chip%MEMS technology%low-voltage-driven electrophoresis on microchip%array-electrode pairs
为了解决微流控电泳芯片集成化问题,设计并制作出一种具有管道两侧微阵列电极结构的硅-PDMS复合低电压电泳芯片.通过电路控制程序在微侧壁阵列电极上施加交替循环的低电压,以实现芯片微管道中低电压电泳过程;并对硅-PDMS芯片的电绝缘性、伏安曲线及电渗流等性能进行了测试和评价.以pH为10.0、10 mmol/L的硼砂作为缓冲体系,分离场强150 V/cm、切换时间3 s的条件下,完成了10-4 mol/L的苯丙氨酸和精氨酸的低电压电泳分离,分离度达1.6,实现了两种氨基酸的完全分离.在此基础上,将系统用于牛血清白蛋白和α-乳白蛋白的分离,并初步实现了该两种蛋白质的芯片电泳分离.
為瞭解決微流控電泳芯片集成化問題,設計併製作齣一種具有管道兩側微陣列電極結構的硅-PDMS複閤低電壓電泳芯片.通過電路控製程序在微側壁陣列電極上施加交替循環的低電壓,以實現芯片微管道中低電壓電泳過程;併對硅-PDMS芯片的電絕緣性、伏安麯線及電滲流等性能進行瞭測試和評價.以pH為10.0、10 mmol/L的硼砂作為緩遲體繫,分離場彊150 V/cm、切換時間3 s的條件下,完成瞭10-4 mol/L的苯丙氨痠和精氨痠的低電壓電泳分離,分離度達1.6,實現瞭兩種氨基痠的完全分離.在此基礎上,將繫統用于牛血清白蛋白和α-乳白蛋白的分離,併初步實現瞭該兩種蛋白質的芯片電泳分離.
위료해결미류공전영심편집성화문제,설계병제작출일충구유관도량측미진렬전겁결구적규-PDMS복합저전압전영심편.통과전로공제정서재미측벽진렬전겁상시가교체순배적저전압,이실현심편미관도중저전압전영과정;병대규-PDMS심편적전절연성、복안곡선급전삼류등성능진행료측시화평개.이pH위10.0、10 mmol/L적붕사작위완충체계,분리장강150 V/cm、절환시간3 s적조건하,완성료10-4 mol/L적분병안산화정안산적저전압전영분리,분리도체1.6,실현료량충안기산적완전분리.재차기출상,장계통용우우혈청백단백화α-유백단백적분리,병초보실현료해량충단백질적심편전영분리.
A new SOI-PDMS hybrid low-voltage-driven electrophoresis microchip with integrated array-electrodes on the microchannel sidewall was designed and constructed. A specially integrated circuit(IC) was proposed to power a DC voltage to particular sets of these electrode pairs in a controlled sequence so that the moving electric field could be formed, and the low-voltage-driven electrophoresis could be realized in the microchannel. Using the mini laser-induced fluorescence (LIF) as detection mode, a set of low-voltage-driven electrophoresis separating and detecting system was finally established. The electrical properties of the microchip, such as insulation, volt-ampere characteristic curve and electroosmotic flow, were tested and evaluated. Fluorescein-5(6)-isothiocyanate (FITC) labeled 10-4 mol/L arginine and phenylalanine were successfully separated under the optimal conditions, including 10 mmol/L borax buffer (pH=10), 150 V/cm separation electric field strength and switching time of 3 s. The separation was completed with a resolution of 1.6. Finally, the system was applied to the protein analysis, and the separation of BSA and α-lactoglobulin from their mixture was realized preliminarily by low-voltage-driven electrophoresis on microchip.