应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2010年
1期
204-212
,共9页
恒化器模型%稳定%灭绝%持久%脉冲输入
恆化器模型%穩定%滅絕%持久%脈遲輸入
항화기모형%은정%멸절%지구%맥충수입
Chemostat model%Stability%Extinction%Permanence%Impulsive input
本文研究了污染环境下具有脉冲输入的竞争培养模型.利用乘子理论和小振幅扰动法,我们得到了种群灭绝周期解全局渐近稳定的充分条件,同时还得到了种群持久的条件.我们的结果表明环境污染能最终导致种群灭绝.
本文研究瞭汙染環境下具有脈遲輸入的競爭培養模型.利用乘子理論和小振幅擾動法,我們得到瞭種群滅絕週期解全跼漸近穩定的充分條件,同時還得到瞭種群持久的條件.我們的結果錶明環境汙染能最終導緻種群滅絕.
본문연구료오염배경하구유맥충수입적경쟁배양모형.이용승자이론화소진폭우동법,아문득도료충군멸절주기해전국점근은정적충분조건,동시환득도료충군지구적조건.아문적결과표명배경오염능최종도치충군멸절.
In this paper, a chemostat-type competition model with pulsed input in a polluted environment is considered. Using Floquet theory and small amplitude perturbation method, we prove that the microorganism-eradication periodic solution is asymptotically stable if some conditions are needed. At the same time we can find the condition of the nutrient and microorganism are permanent. Our results show that the polluted environment can lead the microorganism species to be extinct.