重庆工学院学报(自然科学版)
重慶工學院學報(自然科學版)
중경공학원학보(자연과학판)
JOURNAL OF CHONGQING INSTITUTE OF TECHNOLOGY
2008年
3期
47-50
,共4页
支持向量机%近红外光谱%统计学习理论
支持嚮量機%近紅外光譜%統計學習理論
지지향량궤%근홍외광보%통계학습이론
Support Vector Machine%NIR%Statistical Learning Theory (SLT)
对支持向量机这种功能强大的基于统计学习理论的机器学习方法进行了介绍,指出因其具有以任意精度逼近非线性方程和良好的泛化能力等优点,受到了越来越多的关注.同时,对近红外光谱技术进行了分析,并将支持向量机和近红外光谱相结合用于回归和模式识别,验证表明,将二者结合可取得满意的效果.
對支持嚮量機這種功能彊大的基于統計學習理論的機器學習方法進行瞭介紹,指齣因其具有以任意精度逼近非線性方程和良好的汎化能力等優點,受到瞭越來越多的關註.同時,對近紅外光譜技術進行瞭分析,併將支持嚮量機和近紅外光譜相結閤用于迴歸和模式識彆,驗證錶明,將二者結閤可取得滿意的效果.
대지지향량궤저충공능강대적기우통계학습이론적궤기학습방법진행료개소,지출인기구유이임의정도핍근비선성방정화량호적범화능력등우점,수도료월래월다적관주.동시,대근홍외광보기술진행료분석,병장지지향량궤화근홍외광보상결합용우회귀화모식식별,험증표명,장이자결합가취득만의적효과.
Support vector machine (SVM) is a powerful machine learning technology based on statisticallearning theory (SLT). It has attracted growing research interest because of its obvious advantages such asnonlinear function approximation with arbitrary accuracy, and good generalization ability, unique and glob-ally optimal solutions. Near-infrared spectroscopy (NIR) analytical technique is simple, fast and of lowcost, making neither pollution nor damage to the samples, and can determine many components simultane-ously. In this paper, support vector machine (SVM) combined with NIR is applied to regression and pat-tern recognition, and satisfactory result is obtained