中华麻醉学杂志
中華痳醉學雜誌
중화마취학잡지
CHINESE JOURNAL OF ANESTHESIOLOGY
2009年
1期
71-75
,共5页
孟海兵%许平波%许华%邓小明%林中营%严诗楷%李金宝
孟海兵%許平波%許華%鄧小明%林中營%嚴詩楷%李金寶
맹해병%허평파%허화%산소명%림중영%엄시해%리금보
代谢%磁共振波谱学%脓毒症%预后
代謝%磁共振波譜學%膿毒癥%預後
대사%자공진파보학%농독증%예후
Metabolism%Magnetic resonance spectroscopy%Sepsis%Prognosis
目的 评价基于核磁共振波谱仪(NMR)的代谢组学技术预测大鼠脓毒症预后的准确性.方法 实验一取48只雄性SD大鼠,周龄6~8周,体重220~250 g,随机分为3组:对照组(C组,n=8)、假手术组(S I组,n=8)和脓毒症组(CLP I组,n=32).采用盲肠结扎穿孔法制备大鼠脓毒症模型.C组和S Ⅰ组于术后12 h时,CLP组于术后6、12、18、24 h时各取8只大鼠,采集颈内动脉血样3 ml,进行血气分析,并测定肝、肾功能;然后放血处死大鼠,取左下肺组织和左肾组织,光镜下观察病理学结果.实验二另取65只雄性SD大鼠,周龄6~8周,体重220~250 g,随机分为2组:假手术组(SⅡ组,n=20)和CLPⅡ组(n=45).采用盲肠结扎穿孔法制备大鼠脓毒症模型.术后12 h经尾静脉采血样1.2 ml,取血清待行1H NMR分析.根据6 d内生存状况,将CLPⅡ组大鼠分为3个亚组:生存组(存活期6 d)、死亡组(存活期24 h~6 d)和废弃组(存活期<24 h).采用κ-最近邻算法(κ-NN)和径向基函数神经网络算法(RBFNN)预测脓毒症预后.结果 正交偏最小二乘-判别分析法可完全区分3组大鼠的生理特征.与脓毒症预后有关的6个标志物为β-羟丁酸、乳酸、丙氨酸、醋酸和乙酰乙酸和甲酸.采用κ-NN和RBFNN均可早期预测脓毒症大鼠预后,RBFNN预测效能优于κ-NN(P<0.05).结论 脓毒症后在各器官发生轻微损伤时,机体糖、蛋白质、脂肪和核酸代谢异常,利用基于NMR的代谢组学技术可早期、有效地预测脓毒症的预后.
目的 評價基于覈磁共振波譜儀(NMR)的代謝組學技術預測大鼠膿毒癥預後的準確性.方法 實驗一取48隻雄性SD大鼠,週齡6~8週,體重220~250 g,隨機分為3組:對照組(C組,n=8)、假手術組(S I組,n=8)和膿毒癥組(CLP I組,n=32).採用盲腸結扎穿孔法製備大鼠膿毒癥模型.C組和S Ⅰ組于術後12 h時,CLP組于術後6、12、18、24 h時各取8隻大鼠,採集頸內動脈血樣3 ml,進行血氣分析,併測定肝、腎功能;然後放血處死大鼠,取左下肺組織和左腎組織,光鏡下觀察病理學結果.實驗二另取65隻雄性SD大鼠,週齡6~8週,體重220~250 g,隨機分為2組:假手術組(SⅡ組,n=20)和CLPⅡ組(n=45).採用盲腸結扎穿孔法製備大鼠膿毒癥模型.術後12 h經尾靜脈採血樣1.2 ml,取血清待行1H NMR分析.根據6 d內生存狀況,將CLPⅡ組大鼠分為3箇亞組:生存組(存活期6 d)、死亡組(存活期24 h~6 d)和廢棄組(存活期<24 h).採用κ-最近鄰算法(κ-NN)和徑嚮基函數神經網絡算法(RBFNN)預測膿毒癥預後.結果 正交偏最小二乘-判彆分析法可完全區分3組大鼠的生理特徵.與膿毒癥預後有關的6箇標誌物為β-羥丁痠、乳痠、丙氨痠、醋痠和乙酰乙痠和甲痠.採用κ-NN和RBFNN均可早期預測膿毒癥大鼠預後,RBFNN預測效能優于κ-NN(P<0.05).結論 膿毒癥後在各器官髮生輕微損傷時,機體糖、蛋白質、脂肪和覈痠代謝異常,利用基于NMR的代謝組學技術可早期、有效地預測膿毒癥的預後.
목적 평개기우핵자공진파보의(NMR)적대사조학기술예측대서농독증예후적준학성.방법 실험일취48지웅성SD대서,주령6~8주,체중220~250 g,수궤분위3조:대조조(C조,n=8)、가수술조(S I조,n=8)화농독증조(CLP I조,n=32).채용맹장결찰천공법제비대서농독증모형.C조화S Ⅰ조우술후12 h시,CLP조우술후6、12、18、24 h시각취8지대서,채집경내동맥혈양3 ml,진행혈기분석,병측정간、신공능;연후방혈처사대서,취좌하폐조직화좌신조직,광경하관찰병이학결과.실험이령취65지웅성SD대서,주령6~8주,체중220~250 g,수궤분위2조:가수술조(SⅡ조,n=20)화CLPⅡ조(n=45).채용맹장결찰천공법제비대서농독증모형.술후12 h경미정맥채혈양1.2 ml,취혈청대행1H NMR분석.근거6 d내생존상황,장CLPⅡ조대서분위3개아조:생존조(존활기6 d)、사망조(존활기24 h~6 d)화폐기조(존활기<24 h).채용κ-최근린산법(κ-NN)화경향기함수신경망락산법(RBFNN)예측농독증예후.결과 정교편최소이승-판별분석법가완전구분3조대서적생리특정.여농독증예후유관적6개표지물위β-간정산、유산、병안산、작산화을선을산화갑산.채용κ-NN화RBFNN균가조기예측농독증대서예후,RBFNN예측효능우우κ-NN(P<0.05).결론 농독증후재각기관발생경미손상시,궤체당、단백질、지방화핵산대사이상,이용기우NMR적대사조학기술가조기、유효지예측농독증적예후.
Objective To evaluate the accuracy of metabonomic technique based on nuclear magnetic resonance (NMR) spectroscopy in predicting the prognosis in septic rats. Methods Male SD rats aged 6-8 weeks weighing 220-250 g were used in this study. The experiment was performed in 2 parts. In part 1 48 male SD rats were randomly divided into 3 groups: group Ⅰcontrol (C, n=8);group Ⅱ sham operation (S, n=8);group Ⅲ sepsis (CLP, n=32). The animals were anesthetized with intraperitoneal 10% chloral hydrate 1 ml. Sepsis was produced by cecum ligation and puncture (CLP). Arterial blood samples were obtained at 6, 12, 18, 24 h (n=8 each) after CLP for blood gas analysis and liver and kidney function tests. The animals were then killed and the left lung and kidney were removed for microscopic examination. In part Ⅱ 65 male SD rats were randomly divided into 2 groups: group Ⅰsham operation (S, n=20) and group Ⅱ CLP (n=45). Group Ⅱ was further divided into 2 subgroups according to the survival time after CLP: subgroup Ⅰ survival time>6 days (CLP1) and subgroup Ⅱ survival time between 24 h-6 d. The animals were excluded if survival time after CLP was less than 24 h. Venous blood samples were obtained at 12 h after CLP for measurement of serum metabolites, κ-Nearest neighbar (κ-NN) and radial basis function neural net work (RBFNN) were used to predict prognosis of sepsis. Results Orthogonal partial least square discriminant analysis (O-PLS-DA) showed clustering according to groups indicating that NMRspectroscopy-based metabonomic technique could reveal pathologic characteristics of different groups. There were significant changes in six markers including lactate, alanine, acetate, acetoacetate, β-hydroxybutyrate and formate in septic rats. Both κ-NN and RBFNN could predict the prognosis in septic rots. RBFNN was superior to κ-NN in the prediction of prognosis. Conclusion NMR spectroscopy-based metabonomic approach combined with pattern recognition permits accurate prediction of the outcome of septic rats in the early stage when organs are slightly damaged.