舰船电子对抗
艦船電子對抗
함선전자대항
JIANGCHUAN DIANZI DUIKANG
2011年
5期
12-14
,共3页
张荣%杨秋%何佃伟%吴宏超
張榮%楊鞦%何佃偉%吳宏超
장영%양추%하전위%오굉초
信号分选%聚类%阀值%近类点%模糊点
信號分選%聚類%閥值%近類點%模糊點
신호분선%취류%벌치%근류점%모호점
signal sorting%clustering%threshold%close-category point%fuzzy point
针对基于密度聚类(DBSCAN)算法不能发现雷达信号密度分布不均匀的缺陷,提出了一种基于近类点和模糊点的聚类方法。该方法利用同一部雷达数据的分布特性进行聚类,通过确定近类点和模糊点以达到分选不同密度分布的雷达信号,适用于未知雷达信号的分选。算法测试表明,该方法对噪声不敏感,能够发现任意形状、大小和密度的聚类。
針對基于密度聚類(DBSCAN)算法不能髮現雷達信號密度分佈不均勻的缺陷,提齣瞭一種基于近類點和模糊點的聚類方法。該方法利用同一部雷達數據的分佈特性進行聚類,通過確定近類點和模糊點以達到分選不同密度分佈的雷達信號,適用于未知雷達信號的分選。算法測試錶明,該方法對譟聲不敏感,能夠髮現任意形狀、大小和密度的聚類。
침대기우밀도취류(DBSCAN)산법불능발현뢰체신호밀도분포불균균적결함,제출료일충기우근류점화모호점적취류방법。해방법이용동일부뢰체수거적분포특성진행취류,통과학정근류점화모호점이체도분선불동밀도분포적뢰체신호,괄용우미지뢰체신호적분선。산법측시표명,해방법대조성불민감,능구발현임의형상、대소화밀도적취류。
Aiming at the problem that the algorithm of density-based spatial clustering of applications with noise(DBSCAN) can not find the radar signal density distribution is not even,this paper presents a new clustering algorithm based on close-category and fuzzy points.This method performs clustering by means of the distribution characteristics of data in the same radar,through confirming close-category points and fuzzy points,it can sort the radar signals of different density distribution,which is adapted to sort unknown radar signals.The algorithm test shows that the proposed method is not sensitive to noise and can find the clustering with arbitrary shapes,size and densities.