高等数学研究
高等數學研究
고등수학연구
STUDIES IN COLLEGE MATHEMATICS
2011年
4期
23-27
,共5页
杨尚俊%章权兵%李红粉%王刚%张洋
楊尚俊%章權兵%李紅粉%王剛%張洋
양상준%장권병%리홍분%왕강%장양
有限网络%无向图%邻接矩阵%二元域上的线性方程组
有限網絡%無嚮圖%鄰接矩陣%二元域上的線性方程組
유한망락%무향도%린접구진%이원역상적선성방정조
finite networks%undirected graphs%adjacency matrix%system of linearequations in field Z_2
借助实例提出一个有关有限网络研究的基本问题:对装置的任意电路网络是否总能经有限次改变状态后,从全"关闭"状态变为全"开启"状态.利用无向图作为网络的数学模型,并利用邻接矩阵,可把该基本问题归结为证明二元域Z2上一个特殊的线性方程组是否有解的问题.基于二元域Z2的运算性质及此域上线性方程组的理论,可严格证明上述线性方程组解的存在性,进而可证明基本问题存在肯定性解答.
藉助實例提齣一箇有關有限網絡研究的基本問題:對裝置的任意電路網絡是否總能經有限次改變狀態後,從全"關閉"狀態變為全"開啟"狀態.利用無嚮圖作為網絡的數學模型,併利用鄰接矩陣,可把該基本問題歸結為證明二元域Z2上一箇特殊的線性方程組是否有解的問題.基于二元域Z2的運算性質及此域上線性方程組的理論,可嚴格證明上述線性方程組解的存在性,進而可證明基本問題存在肯定性解答.
차조실례제출일개유관유한망락연구적기본문제:대장치적임의전로망락시부총능경유한차개변상태후,종전"관폐"상태변위전"개계"상태.이용무향도작위망락적수학모형,병이용린접구진,가파해기본문제귀결위증명이원역Z2상일개특수적선성방정조시부유해적문제.기우이원역Z2적운산성질급차역상선성방정조적이론,가엄격증명상술선성방정조해적존재성,진이가증명기본문제존재긍정성해답.
In this paper we give an example to present a basic problem tor finite networks: whether it is possible or not for any finite network of devices to change its status from the initial status with all its devices being in "close" state to the final status with all its devices being in "open" state? An undirected graph whose adjacency matrix is properly defined can be used as a mathematical model of the network. We confirm the positive answer for the basic problem by proving that the corresponding system Of linear equations is consistent in the field Z_2.