纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2010年
1期
70-74
,共5页
脉搏波%频谱%小波变换%小波熵%贝叶斯判别分析
脈搏波%頻譜%小波變換%小波熵%貝葉斯判彆分析
맥박파%빈보%소파변환%소파적%패협사판별분석
pulse wave%spectrum%wavelet transform%wavelet entropy%Bayes discriminant analysis
脉搏波的频谱蕴含丰富的病理信息,但其复杂的频谱计算和分类是临床应用的瓶颈之一.本文引入模式识别技术,建立了心血管疾病的自动识别专家系统,为脉搏波频谱分析在临床中的应用开辟了新的研究思路.首先采用小波变换在多分辨率层次上提取脉搏波的频域特征,不仅获得了各个频带的谱能分量,而且得到了频谱分布参数小渡熵;然后采用贝叶斯判别分析法建立自动识别模型,对频域特征进行分类.临床采集了30例冠心病人和30例正常人的脉搏波信号,对识别模型进行了训练,最后对模型进行了交互验证.结果表明,该识别模型对冠心病人的识别准确率为83.3%,对正常人的识别准确率为70.0%.该方法具有较好的识别效果,为脉搏波自动识别技术的发展提供了借鉴.
脈搏波的頻譜蘊含豐富的病理信息,但其複雜的頻譜計算和分類是臨床應用的瓶頸之一.本文引入模式識彆技術,建立瞭心血管疾病的自動識彆專傢繫統,為脈搏波頻譜分析在臨床中的應用開闢瞭新的研究思路.首先採用小波變換在多分辨率層次上提取脈搏波的頻域特徵,不僅穫得瞭各箇頻帶的譜能分量,而且得到瞭頻譜分佈參數小渡熵;然後採用貝葉斯判彆分析法建立自動識彆模型,對頻域特徵進行分類.臨床採集瞭30例冠心病人和30例正常人的脈搏波信號,對識彆模型進行瞭訓練,最後對模型進行瞭交互驗證.結果錶明,該識彆模型對冠心病人的識彆準確率為83.3%,對正常人的識彆準確率為70.0%.該方法具有較好的識彆效果,為脈搏波自動識彆技術的髮展提供瞭藉鑒.
맥박파적빈보온함봉부적병리신식,단기복잡적빈보계산화분류시림상응용적병경지일.본문인입모식식별기술,건립료심혈관질병적자동식별전가계통,위맥박파빈보분석재림상중적응용개벽료신적연구사로.수선채용소파변환재다분변솔층차상제취맥박파적빈역특정,불부획득료각개빈대적보능분량,이차득도료빈보분포삼수소도적;연후채용패협사판별분석법건립자동식별모형,대빈역특정진행분류.림상채집료30례관심병인화30례정상인적맥박파신호,대식별모형진행료훈련,최후대모형진행료교호험증.결과표명,해식별모형대관심병인적식별준학솔위83.3%,대정상인적식별준학솔위70.0%.해방법구유교호적식별효과,위맥박파자동식별기술적발전제공료차감.
The spectrum of pulse waves contains abundant pathological information,yet its complicated frequency-domain calculation and taxonomy are one of the bottlenecks in clinic application.In this paper,pattern recognition technique was introduced and an automatic recognition system of cardiovascular diseases was established,which provides a new research approach for pulse wave frequency-domain analysis in clinic application.First,wavelet transform was used to extract spectrum features of pulse waves,including the spectrum energy of each frequency component and the complexity parameter of spectrum distribution,i.e.the wavelet entropy.Then the automatic recognition model was built up based on Bayes discriminant analysis to classify spectrum features.The pulse waves of 30 normal subjects and 30 subjects with coronary disease were collected to train the recognition model,which was then evaluated by crossvalidation.The results show that the correct recognition rate of the model can reach 83.3% for patients with cardiovascular diseases and 70.0% for the normal.So the proposed model that integrates spectrum analysis and pattern recognition is satisfactory in recognition of cardiovascular diseases and has supplied insight into the automatic recognition technique of pulse waves.