生物数学学报
生物數學學報
생물수학학보
JOURNAL OF BIOMATHEMATICS
2007年
4期
613-619
,共7页
反应扩散系统%混合拟单调性%单调迭代%上下解%行波解
反應擴散繫統%混閤擬單調性%單調迭代%上下解%行波解
반응확산계통%혼합의단조성%단조질대%상하해%행파해
Reaction-diffusion system%Mixed quasimonotonicity%Monotone iteration%Upper and lower solutions%Traveling wave solution
运用单调迭代方法,证明了混合拟单调系统的行波解的存在性.当反应扩散系统的反应函数是混合拟单调函数时,如果选取一对合适的耦合上下解作为迭代初值,则迭代序列将收敛到一对拟解.而且在这对拟解之间存在系统的行波解.
運用單調迭代方法,證明瞭混閤擬單調繫統的行波解的存在性.噹反應擴散繫統的反應函數是混閤擬單調函數時,如果選取一對閤適的耦閤上下解作為迭代初值,則迭代序列將收斂到一對擬解.而且在這對擬解之間存在繫統的行波解.
운용단조질대방법,증명료혼합의단조계통적행파해적존재성.당반응확산계통적반응함수시혼합의단조함수시,여과선취일대합괄적우합상하해작위질대초치,칙질대서렬장수렴도일대의해.이차재저대의해지간존재계통적행파해.
By the monotone iteration scheme, the existence of traveling wave solutions is established for the mixed quasimonotone systems. If the reaction functions satisfy the mixed quasimonotonicity condition, the iterative sequences converge to a pair of coupled quasisolutions, provided that the initial functions for the iteration scheme is chosen to be a pair of coupled upper and lower solutions.