应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2012年
1期
61-70
,共10页
核函数%线性互补问题%内点算法%大步校正算法%多项式复杂性
覈函數%線性互補問題%內點算法%大步校正算法%多項式複雜性
핵함수%선성호보문제%내점산법%대보교정산법%다항식복잡성
Kernel function%Linear complementarity problem%Interior-point algorithm%Large-update method%Polynomial complexity
本文采用一簇新的核函数设计原始-对偶内点算法用于解决P*(k)线性互补问题.通过利用一些优良、简洁的分析工具,证明该算法具有O(q(2k+1)n1/p(log n)1+1/qlog(n/(ε)))迭代复杂性.
本文採用一簇新的覈函數設計原始-對偶內點算法用于解決P*(k)線性互補問題.通過利用一些優良、簡潔的分析工具,證明該算法具有O(q(2k+1)n1/p(log n)1+1/qlog(n/(ε)))迭代複雜性.
본문채용일족신적핵함수설계원시-대우내점산법용우해결P*(k)선성호보문제.통과이용일사우량、간길적분석공구,증명해산법구유O(q(2k+1)n1/p(log n)1+1/qlog(n/(ε)))질대복잡성.
In this paper,motivated by the complexity results for LO based on kernel functions,we extend a generic primal-dual interior-point algorithm based on a new class of kernel functions to solve P* (k) LCPs.By using some elegant and simple tools,under the interior-point condition,we show that the large update primal-dual interior-point methods for solving P* (k) LCPs enjoys O(q(2k+ 1)n1/p (log n)1+1/qlog n(ε)-1 ) iteration bound.