系统仿真学报
繫統倣真學報
계통방진학보
JOURNAL OF SYSTEM SIMULATION
2007年
17期
3943-3944,3992
,共3页
奇异摄动%滞时微分方程%一致收敛%数值方法
奇異攝動%滯時微分方程%一緻收斂%數值方法
기이섭동%체시미분방정%일치수렴%수치방법
singular perturbation%delay differential equation%uniform convergence%numerical method.
提出了求解线性奇异摄动滞时微分方程基于指数拟合技术的一致收敛和最佳一致收敛的数值方法,并证明了方法的一致收敛性.利用线性化的思想,并结合Newton-Raphson迭代,构造了求解非线性奇异摄动滞时微分方程相应的一致收敛的算法.数值例子验证上述理论结论的正确性.
提齣瞭求解線性奇異攝動滯時微分方程基于指數擬閤技術的一緻收斂和最佳一緻收斂的數值方法,併證明瞭方法的一緻收斂性.利用線性化的思想,併結閤Newton-Raphson迭代,構造瞭求解非線性奇異攝動滯時微分方程相應的一緻收斂的算法.數值例子驗證上述理論結論的正確性.
제출료구해선성기이섭동체시미분방정기우지수의합기술적일치수렴화최가일치수렴적수치방법,병증명료방법적일치수렴성.이용선성화적사상,병결합Newton-Raphson질대,구조료구해비선성기이섭동체시미분방정상응적일치수렴적산법.수치례자험증상술이론결론적정학성.
Uniformly convergent and optimal uniformly convergent numerical schemes based on the exponential fitting technique were proposed for solving linear singular perturbation problems with after-effect. Corresponding uniformly convergent numerical schemes were constructed by linearization combined with Newton-Raphson iteration for nonlinear problems. Numerical examples were given to confirm the theoretical results.