黑龙江大学自然科学学报
黑龍江大學自然科學學報
흑룡강대학자연과학학보
JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY
2011年
5期
724-732,736
,共10页
刘静波%郝伟达%杜雪岩%巴塞·赛义德%王智民
劉靜波%郝偉達%杜雪巖%巴塞·賽義德%王智民
류정파%학위체%두설암%파새·새의덕%왕지민
合成参数%四方畸变度%钙钛矿薄膜%人工神经网络
閤成參數%四方畸變度%鈣鈦礦薄膜%人工神經網絡
합성삼수%사방기변도%개태광박막%인공신경망락
fabrication parameters%tetragonality,Cax Pb1 -xTiO3 thin film%artificial neural network%function approximation
利用人工神经网络对化学传感器的晶格畸变进行了深入研究.实验结果表明:传感原件钙掺杂钛酸铅薄膜材料随合成参数的变化而呈现不同的晶格畸变度,该参数通过X射线粉末衍射精细结构确定,并作为人工神经网络的输出变量;合成参数作为输入变量,以MatlabTM作为操作平台,利用三层识别方法对传感元件的纳米结构进行评估与预测.实验结果与预测结果十分吻合,因此神经网络与传统实验方法结合,可以对传感原器件的性能进行准确快捷评估.
利用人工神經網絡對化學傳感器的晶格畸變進行瞭深入研究.實驗結果錶明:傳感原件鈣摻雜鈦痠鉛薄膜材料隨閤成參數的變化而呈現不同的晶格畸變度,該參數通過X射線粉末衍射精細結構確定,併作為人工神經網絡的輸齣變量;閤成參數作為輸入變量,以MatlabTM作為操作平檯,利用三層識彆方法對傳感元件的納米結構進行評估與預測.實驗結果與預測結果十分吻閤,因此神經網絡與傳統實驗方法結閤,可以對傳感原器件的性能進行準確快捷評估.
이용인공신경망락대화학전감기적정격기변진행료심입연구.실험결과표명:전감원건개참잡태산연박막재료수합성삼수적변화이정현불동적정격기변도,해삼수통과X사선분말연사정세결구학정,병작위인공신경망락적수출변량;합성삼수작위수입변량,이MatlabTM작위조작평태,이용삼층식별방법대전감원건적납미결구진행평고여예측.실험결과여예측결과십분문합,인차신경망락여전통실험방법결합,가이대전감원기건적성능진행준학쾌첩평고.
An in - depth study on lattice distortion of a chemical sensor composed of calcium doped lead titanate (CaxPb1 -xTiO3 ) thin film is present.The micro- structural lattice distortion (defined as tetragonality,δ) is crucial for sensor's sensitivity and response time.To evaluation and predict the tetragonality,a three -layer artificial neural network (ANN) model is applied,based on experimental results related to the tetragonality values of the thin films determined via X - ray powder diffraction.The fabrication parameters,including heat- treatment temperature,dopant content,and heating rate have been considered as the input parameters,whereas the tetragonality as the output parameter.Function approximation was employed and simulation was implemented on the MatlabTM.The predicted results were compared with experimental results and it was found out that the results obtained from ANN model were accurate in predicting the nano - structural distortion of the thin film.The results showed that ANN is an effective tool in the simulation and prediction of thin - film tetragonality and highly useful compared with traditional trial - error experimental processes.Since predicted data by ANN model were essentially identical to the experimental results,this model can be used to estimate the tetragonality of different thin films for humidity sensors.