矿床地质
礦床地質
광상지질
MINERAL DEPOSITS
2009年
5期
687-695
,共9页
龙汉生%罗泰义%黄智龙%周明忠%杨勇%钱志宽
龍漢生%囉泰義%黃智龍%週明忠%楊勇%錢誌寬
룡한생%라태의%황지룡%주명충%양용%전지관
地球化学%碳、氧同位素%成矿流体%水岩反应%银多金属矿床%老厂%云南
地毬化學%碳、氧同位素%成礦流體%水巖反應%銀多金屬礦床%老廠%雲南
지구화학%탄、양동위소%성광류체%수암반응%은다금속광상%로엄%운남
geochemistry%oxygen and carbon isotopic composition%ore-forming fluid%modeling of fluid-rock imeraction%Ag polymetallic deposit%Laochang%Yunnan
文章系统研究了老厂矿床的碳酸盐围岩和成矿方解石的碳、氧同位素组成.研究表明,相对于区域地层,矿区碳酸盐岩围岩普遍亏损~(18)O;成矿方解石的碳氧同位素总体上具有明显的正相关性,这些特征表明成矿流体与围岩发生了大规模的水岩反应.文章初步建立了水岩反应的理想模式,根据该模式进一步将成矿方解石划分为矿体中心相和边缘相2组.水岩反应理论模拟表明:总体上成矿流体中的可溶性碳以H_2CO_3为主,中心相成矿流体的δ~(13)C、δ~(18)O值分别为-5.5‰和+4‰,具有典型深部岩浆流体的特征;边缘相成矿流体的δ~(13)C、δ~(18)O值分别为-1.5‰和+4‰,代表了深部岩浆流体与下渗天水共同交代碳酸盐岩围岩后的碳、氧同位素特征.
文章繫統研究瞭老廠礦床的碳痠鹽圍巖和成礦方解石的碳、氧同位素組成.研究錶明,相對于區域地層,礦區碳痠鹽巖圍巖普遍虧損~(18)O;成礦方解石的碳氧同位素總體上具有明顯的正相關性,這些特徵錶明成礦流體與圍巖髮生瞭大規模的水巖反應.文章初步建立瞭水巖反應的理想模式,根據該模式進一步將成礦方解石劃分為礦體中心相和邊緣相2組.水巖反應理論模擬錶明:總體上成礦流體中的可溶性碳以H_2CO_3為主,中心相成礦流體的δ~(13)C、δ~(18)O值分彆為-5.5‰和+4‰,具有典型深部巖漿流體的特徵;邊緣相成礦流體的δ~(13)C、δ~(18)O值分彆為-1.5‰和+4‰,代錶瞭深部巖漿流體與下滲天水共同交代碳痠鹽巖圍巖後的碳、氧同位素特徵.
문장계통연구료로엄광상적탄산염위암화성광방해석적탄、양동위소조성.연구표명,상대우구역지층,광구탄산염암위암보편우손~(18)O;성광방해석적탄양동위소총체상구유명현적정상관성,저사특정표명성광류체여위암발생료대규모적수암반응.문장초보건립료수암반응적이상모식,근거해모식진일보장성광방해석화분위광체중심상화변연상2조.수암반응이론모의표명:총체상성광류체중적가용성탄이H_2CO_3위주,중심상성광류체적δ~(13)C、δ~(18)O치분별위-5.5‰화+4‰,구유전형심부암장류체적특정;변연상성광류체적δ~(13)C、δ~(18)O치분별위-1.5‰화+4‰,대표료심부암장류체여하삼천수공동교대탄산염암위암후적탄、양동위소특정.
Carbon and oxygen isotopic compositions of carbonate host rocks and ore-forming calcite in the Laochang Ag polymetallic deposit of Yunnan Province were studied. The restdts suggest that limestone in the ore district is obviously depleted in ~(18)O relative to the cor-responding strata in this area, and that there exists an obvious positive relation between carbon and oxygen isotopes in ore-forming cal-cites. The C and O isotope evolution suggests that drastic water-rock interaction took place at the ore-forming stage. An ideal water-rock interaction model has been proposed for the C and O isotope evolution. Ore-forming calcite is classified into two groups, with one being the mineralization core phase and the other being the mineralization rim phase. Theoretical simulation of C and O isotope of fluid-rock interaction shows that the dominant dissolved carbon species in the ore-forming fluid are H_2CO_3, and that the δ~(13)C and δ~(18)O of ore-forming hydrothermal fluids of the core phase and the rim phase are - 5.5‰, + 4‰, and - 1.5‰, + 4‰, respectively. The ore-forming hydrothermal fluid of the core phase calcite was derived from magmatic water, whereas the ore-forming hydrothermal fluid of the rim phase calcite was produced by the interaction between the magmatic water and meteorite water and the carbonate host rocks.