应用气象学报
應用氣象學報
응용기상학보
QUARTERLY JOURNAL OF APPLIED METEOROLOGY
2009年
5期
521-529
,共9页
事件概率同归估计%降水等级预报%TS评分%空报率%漏报率%预报偏差
事件概率同歸估計%降水等級預報%TS評分%空報率%漏報率%預報偏差
사건개솔동귀고계%강수등급예보%TS평분%공보솔%루보솔%예보편차
probability regression estimate%categorical precipitation forecast%TS score%false alarm ratio%missed event ratio%forecast bias
该文对比分析概率回归降水等级预报和回归降水等级预报的差异,2007年秋季至2008年夏季伞国平均检验结果表明:概率回归降水等级预报效果好于同归降水等级预报,尤其是小雨预报,TS评分明显高于回归降水等级预报,同预报偏差过大情况也有很大改善.进一步分析表明:回归降水等级预报方法在建立小雨预报方程的样本中,少数较大降水量的样本方差占总方差的百分比过大,导致预报方程中反映的预报量与预报因子的关系以少数大降水量样本为主,是造成小雨预报空报过大的原因.与模式降水预报的对比分析表明:概率回归降水等级预报效果好于模式直接降水预报,模式降水空报较大情况得到改善.
該文對比分析概率迴歸降水等級預報和迴歸降水等級預報的差異,2007年鞦季至2008年夏季傘國平均檢驗結果錶明:概率迴歸降水等級預報效果好于同歸降水等級預報,尤其是小雨預報,TS評分明顯高于迴歸降水等級預報,同預報偏差過大情況也有很大改善.進一步分析錶明:迴歸降水等級預報方法在建立小雨預報方程的樣本中,少數較大降水量的樣本方差佔總方差的百分比過大,導緻預報方程中反映的預報量與預報因子的關繫以少數大降水量樣本為主,是造成小雨預報空報過大的原因.與模式降水預報的對比分析錶明:概率迴歸降水等級預報效果好于模式直接降水預報,模式降水空報較大情況得到改善.
해문대비분석개솔회귀강수등급예보화회귀강수등급예보적차이,2007년추계지2008년하계산국평균검험결과표명:개솔회귀강수등급예보효과호우동귀강수등급예보,우기시소우예보,TS평분명현고우회귀강수등급예보,동예보편차과대정황야유흔대개선.진일보분석표명:회귀강수등급예보방법재건립소우예보방정적양본중,소수교대강수량적양본방차점총방차적백분비과대,도치예보방정중반영적예보량여예보인자적관계이소수대강수량양본위주,시조성소우예보공보과대적원인.여모식강수예보적대비분석표명:개솔회귀강수등급예보효과호우모식직접강수예보,모식강수공보교대정황득도개선.
Objective precipitation forecast is a difficult problem in NWP products interpretation. Because of its characteristics, objective precipitation forecast is a categorical forecast rather than precipitation amount forecast. The differences between two kinds of categorical precipitation forecast are analyzed. One categorical forecast is based on probability regression. Its method is processing original precipitation to 0 and 1 corresponding categories, and then developing forecast equations of different categories to calculate the cri-terions. In real forecasting, the categorical precipitation will be determined through the criterion and the probability forecast of that category. The other forecast is based on regression, the method of which is preprocessing original samples with value smaller than the threshold to category of 0, and then developing forecast equations and criterions.The experimental result from autumn of 2007 to summer of 2008 indicates that probability regression precipitation categorical forecast is better than regression precipitation categorical forecast. Especially when forecasting light rain, the TS score averaged over China using probability regression method is higher than that of regression precipitation categorical forecast, the false alarm ratio is obviously smaller, and also the forecast bias is closer to 1. Through the analysis of predictors and variance contribution of single sample, the cause of these differences becomes obvious. In regression categorical forecast, the variance contribution of a few heavy rain samples is too large. It results in the relation of predictors and precipitation mainly reflected those minority heavy rain samples. That is why the false alarm ratio of regression categorical forecast is too high. It can be shown in comparing analysis that the probability regression categorical precipitation forecast is better than direct model precipitation forecast and the situation that false alarm ratio is too high is improved.