催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
1999年
6期
597-602
,共6页
刘晨光%Flora T. T. Ng%黄春城
劉晨光%Flora T. T. Ng%黃春城
류신광%Flora T. T. Ng%황춘성
加氢脱硫%硫芴%原位氢%分散型催化剂%动力学
加氫脫硫%硫芴%原位氫%分散型催化劑%動力學
가경탈류%류물%원위경%분산형최화제%동역학
hydrodesulfurization%dibenzothiophene%in situ hydrogen%dispersed catalyst%kinetics
研究了水/甲苯乳化液中二苯并噻吩(硫芴)在分散型钼酸、磷钼酸和四硫代钼酸铵催化剂存在下的加氢脱硫反应.反应在高压釜中于340℃及三种不同的气氛即H2,H2/H2O和CO/H2O(CO和H2O经水煤气转换反应(WGSR)产生原位氢)的存在下进行.用GC和GC-MS鉴定、分析了气体和液体产物的组成.在此基础上,提出了包含直接氢解和加氢脱硫两个反应途径的硫芴加氢反应网络,并采用最优化法计算了反应网络的速率常数.结果表明:对所研究的9个反应体系,反应网络的模型预测值与试验值十分吻合;加氢路径比氢解路径至少快1倍,硫芴的加氢比联苯的加氢快1倍,部分加氢的中间产物1,2,3,4-四氢硫芴和1,2,3,4,10,11-六氢硫芴的氢解比硫芴直接氢解快10倍以上;对硫芴的加氢脱硫反应,在分散型钼存在下,原位产生的氢比加入的氢气更为有效.
研究瞭水/甲苯乳化液中二苯併噻吩(硫芴)在分散型鉬痠、燐鉬痠和四硫代鉬痠銨催化劑存在下的加氫脫硫反應.反應在高壓釜中于340℃及三種不同的氣氛即H2,H2/H2O和CO/H2O(CO和H2O經水煤氣轉換反應(WGSR)產生原位氫)的存在下進行.用GC和GC-MS鑒定、分析瞭氣體和液體產物的組成.在此基礎上,提齣瞭包含直接氫解和加氫脫硫兩箇反應途徑的硫芴加氫反應網絡,併採用最優化法計算瞭反應網絡的速率常數.結果錶明:對所研究的9箇反應體繫,反應網絡的模型預測值與試驗值十分吻閤;加氫路徑比氫解路徑至少快1倍,硫芴的加氫比聯苯的加氫快1倍,部分加氫的中間產物1,2,3,4-四氫硫芴和1,2,3,4,10,11-六氫硫芴的氫解比硫芴直接氫解快10倍以上;對硫芴的加氫脫硫反應,在分散型鉬存在下,原位產生的氫比加入的氫氣更為有效.
연구료수/갑분유화액중이분병새분(류물)재분산형목산、린목산화사류대목산안최화제존재하적가경탈류반응.반응재고압부중우340℃급삼충불동적기분즉H2,H2/H2O화CO/H2O(CO화H2O경수매기전환반응(WGSR)산생원위경)적존재하진행.용GC화GC-MS감정、분석료기체화액체산물적조성.재차기출상,제출료포함직접경해화가경탈류량개반응도경적류물가경반응망락,병채용최우화법계산료반응망락적속솔상수.결과표명:대소연구적9개반응체계,반응망락적모형예측치여시험치십분문합;가경로경비경해로경지소쾌1배,류물적가경비련분적가경쾌1배,부분가경적중간산물1,2,3,4-사경류물화1,2,3,4,10,11-륙경류물적경해비류물직접경해쾌10배이상;대류물적가경탈류반응,재분산형목존재하,원위산생적경비가입적경기경위유효.
The hydrodesulfurization (HDS) of dibenzothiophene (DBT) in H2O/C6HsCH3 emulsion was investigated using dispersed catalyst precursors molybdic acid (MA), phosphomolybdic acid (PMA), and ammonium tetrathiomolybdate (ATTM).A pseudo-first-order reaction network involving two pathways, direct hydrogenolysis route and hydrogenation route, was proposed. The reaction rate constants in the network were calculated by the optimization method. The model prediction fits well with the experimental data for the nine reaction systems examined. The kinetic data indicated that the hydrogenation route was at least 2 times more rapid than the hydrogenolysis route. The hydrogenation of DBT was 2 times faster than the hydrogenation of biphenyl. The hydrogenolysis of the partially hydrogenated DBT was 1 order of magnitude more rapid than the direct hydrogenolysis of DBT. The calculated results also confirmed kinetic ally that in situ hydrogen was apparently more reactive than the externally supplied molecular H2 for HDS of DBT.