新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2009年
3期
223-229
,共7页
李世鸿%叶忠信%张永平%汪岛军%黄柏仁
李世鴻%葉忠信%張永平%汪島軍%黃柏仁
리세홍%협충신%장영평%왕도군%황백인
多晶金刚石薄膜%微波电浆辅助化学气相沉积(MPECVD)%两段成长%偏压增强成核(BEN)
多晶金剛石薄膜%微波電漿輔助化學氣相沉積(MPECVD)%兩段成長%偏壓增彊成覈(BEN)
다정금강석박막%미파전장보조화학기상침적(MPECVD)%량단성장%편압증강성핵(BEN)
Polycrystalline diamond%Microwave plasma-enhanced chemical vapor deposition (MPECVD)%Two-stage growth%Bias-enhanced nucleation (BEN)
以化学气相沉积法成长多晶金刚石薄膜时,薄膜的品质会受到成长时间、成长压力、反应气体比例、偏压与否及成核的机制等因素影响.研究采用微波电浆辅助化学气相沉积(MPECVD)法,以甲烷(CH4)和氢气(H2)作为反应气体原料,在P型(111)硅基板沉积多晶金刚石薄膜.典型沉积多晶金刚石薄膜的制程可分为四个阶段:抛蚀表面阶段、渗碳阶段、偏压增强成核(BEN)阶段及成长阶段.研究将成长阶段划分为两个阶段,第一阶段压力较低(成长Ⅰ阶段),第二阶段压力较高(成长Ⅱ阶段).结果表明:第一阶段可大大改善金刚石薄膜的品质,所获多晶金刚石薄膜的晶粒具有明确的颗粒边界、较低的碳化物或缺陷,电导率急剧降低,显现出本徵金刚石半绝缘的性质.可以认为金刚石薄膜品质的改善完全为低压成长所致.实验发现在成长Ⅰ阶段或成长Ⅱ阶段施加偏压时,只会降低多晶金刚石薄膜的品质.
以化學氣相沉積法成長多晶金剛石薄膜時,薄膜的品質會受到成長時間、成長壓力、反應氣體比例、偏壓與否及成覈的機製等因素影響.研究採用微波電漿輔助化學氣相沉積(MPECVD)法,以甲烷(CH4)和氫氣(H2)作為反應氣體原料,在P型(111)硅基闆沉積多晶金剛石薄膜.典型沉積多晶金剛石薄膜的製程可分為四箇階段:拋蝕錶麵階段、滲碳階段、偏壓增彊成覈(BEN)階段及成長階段.研究將成長階段劃分為兩箇階段,第一階段壓力較低(成長Ⅰ階段),第二階段壓力較高(成長Ⅱ階段).結果錶明:第一階段可大大改善金剛石薄膜的品質,所穫多晶金剛石薄膜的晶粒具有明確的顆粒邊界、較低的碳化物或缺陷,電導率急劇降低,顯現齣本徵金剛石半絕緣的性質.可以認為金剛石薄膜品質的改善完全為低壓成長所緻.實驗髮現在成長Ⅰ階段或成長Ⅱ階段施加偏壓時,隻會降低多晶金剛石薄膜的品質.
이화학기상침적법성장다정금강석박막시,박막적품질회수도성장시간、성장압력、반응기체비례、편압여부급성핵적궤제등인소영향.연구채용미파전장보조화학기상침적(MPECVD)법,이갑완(CH4)화경기(H2)작위반응기체원료,재P형(111)규기판침적다정금강석박막.전형침적다정금강석박막적제정가분위사개계단:포식표면계단、삼탄계단、편압증강성핵(BEN)계단급성장계단.연구장성장계단화분위량개계단,제일계단압력교저(성장Ⅰ계단),제이계단압력교고(성장Ⅱ계단).결과표명:제일계단가대대개선금강석박막적품질,소획다정금강석박막적정립구유명학적과립변계、교저적탄화물혹결함,전도솔급극강저,현현출본징금강석반절연적성질.가이인위금강석박막품질적개선완전위저압성장소치.실험발현재성장Ⅰ계단혹성장Ⅱ계단시가편압시,지회강저다정금강석박막적품질.
The quality of polycrystalline diamond films grown by chemical vapor deposition is dependent on the growth time, pressure, carbon-to-hydrogen ratio, bias, and nucleation mechanism involved. In this study, reaction gases, methane (CH4) and hydrogen (H2), were used to grow polycrystalline diamond on a p-type (111) silicon substrate with a microwave plasma-enhanced chemical vapor deposition system. In addition to the conventional etching, bias-en-hanced nucleation, and growth steps, the growth step was further divided into two stages. The first stage (growth Ⅰ) was carried out at low pressure and the second (growth Ⅱ) was carried out at high pressure. Results clearly indicate that the use of the growth Ⅰ stage can considerably improve the quality of the diamond film. In the growth Ⅰ stage, well-faceted grains with lower contents of graphite and carbide, and fewer defects are obtained. Therefore, the conductivity is drasti-cally decreased by nearly two orders of magnitude and the diamond film exhibits the semi-insulating characteristics of in-trinsic diamond. The improvement is caused solely by the addition of the low-pressure growth Ⅰ stage. Application of bi-as in the growth Ⅰand/or growth Ⅱ stages can only degrade the synthesized polycrystalline diamond film.