振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2010年
1期
38-42
,共5页
黄新艺%陈彦江%李岩%盛洪飞%李立云
黃新藝%陳彥江%李巖%盛洪飛%李立雲
황신예%진언강%리암%성홍비%리립운
曲线梁桥%车桥耦合振动%三梁式模型%曲率半径%动力放大系数
麯線樑橋%車橋耦閤振動%三樑式模型%麯率半徑%動力放大繫數
곡선량교%차교우합진동%삼량식모형%곡솔반경%동력방대계수
curved bridges%coupled vehicle-bridge vibration%triple-beam model%curvature radius%dynamic amplification factor (DAF)
针对复杂的车桥耦合振动问题,桥梁结构采用三梁式模型进行离散,首先基于ANSYS提出了简便的分离迭代解法,给出了该问题的详细推导过程和计算步骤,同时通过现场试验对所提出的方法进行了验证.通过快速傅里叶逆变换采用三角级数方法模拟了桥面不平度及其速度项,考虑车辆在曲线梁桥上的行驶偏心,分析了曲率半径和车速对曲线梁桥冲击效应的影响.结果表明:曲线梁桥的位移和内力动力放大系数大于直线梁桥的,且不同位置不同项目的内力和位移之间的动力放大系数的数值差别很大.内力和位移的动力放大系数对曲率半径的变化的敏感性各不相同,当曲率半径小于某个特征值后,动力放大系数变化很大.
針對複雜的車橋耦閤振動問題,橋樑結構採用三樑式模型進行離散,首先基于ANSYS提齣瞭簡便的分離迭代解法,給齣瞭該問題的詳細推導過程和計算步驟,同時通過現場試驗對所提齣的方法進行瞭驗證.通過快速傅裏葉逆變換採用三角級數方法模擬瞭橋麵不平度及其速度項,攷慮車輛在麯線樑橋上的行駛偏心,分析瞭麯率半徑和車速對麯線樑橋遲擊效應的影響.結果錶明:麯線樑橋的位移和內力動力放大繫數大于直線樑橋的,且不同位置不同項目的內力和位移之間的動力放大繫數的數值差彆很大.內力和位移的動力放大繫數對麯率半徑的變化的敏感性各不相同,噹麯率半徑小于某箇特徵值後,動力放大繫數變化很大.
침대복잡적차교우합진동문제,교량결구채용삼량식모형진행리산,수선기우ANSYS제출료간편적분리질대해법,급출료해문제적상세추도과정화계산보취,동시통과현장시험대소제출적방법진행료험증.통과쾌속부리협역변환채용삼각급수방법모의료교면불평도급기속도항,고필차량재곡선량교상적행사편심,분석료곡솔반경화차속대곡선량교충격효응적영향.결과표명:곡선량교적위이화내력동력방대계수대우직선량교적,차불동위치불동항목적내력화위이지간적동력방대계수적수치차별흔대.내력화위이적동력방대계수대곡솔반경적변화적민감성각불상동,당곡솔반경소우모개특정치후,동력방대계수변화흔대.
Aiming at a complex coupled vehicle-bridge problem, a triple-beam model was applied to model bridge structure and a simple separation iteration solution method was presented based on ANSYS program.The detailed derivation process and computational procedures of the problem were also presented and validated by the field dynamic test of a preselected dual-box girder curved bridge.The inverse fast Fourier transformation was applied to generate road irregularity and its velocity term of grade B according to power spectral density of road roughness.The curvature radius and vehicle speed effects were analyzed based on the dynamic amplification factor (DAF) of a curved-bridge considering the traveling eccentricity of vehicles.The results indicated that the DAF of the curved bridge is larger than that of a straight bridge, and DAFs of internal forces and displacement at different positions are different significantly; the internal forces and displacements have different sensitivities to curvature radius, and their DAFs vary greatly while the curvature radius is smaller than a certain characteristic value.