稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2010年
3期
464-468
,共5页
余娟丽%王红洁%张健%严友兰%乔冠军%金志浩
餘娟麗%王紅潔%張健%嚴友蘭%喬冠軍%金誌浩
여연려%왕홍길%장건%엄우란%교관군%금지호
神经网络%多孔氮化硅陶瓷%抗弯强度%气孔率
神經網絡%多孔氮化硅陶瓷%抗彎彊度%氣孔率
신경망락%다공담화규도자%항만강도%기공솔
artificial neural networks%porous Si_3N_4 ceramics%flexural strength%porosity
以凝胶注模法制备多孔氮化硅陶瓷正交试验结果作为样本,建立3层Back Pmpagation(BP)神经网络,并进行训练以预测陶瓷性能.通过附加试验值对建立的神经网络预测能力进行验证,证明该BP神经网络模型是有效的,能准确预测多孔氮化硅陶瓷性能.通过BP神经网络模型研究多孔氮化硅陶瓷性能的结果表明,随着固含量的增加,气孔率单调下降;固含量存在一优化值,此时陶瓷抗弯强度最大;单体含量越大,气孔率越大,而抗弯强度降低.
以凝膠註模法製備多孔氮化硅陶瓷正交試驗結果作為樣本,建立3層Back Pmpagation(BP)神經網絡,併進行訓練以預測陶瓷性能.通過附加試驗值對建立的神經網絡預測能力進行驗證,證明該BP神經網絡模型是有效的,能準確預測多孔氮化硅陶瓷性能.通過BP神經網絡模型研究多孔氮化硅陶瓷性能的結果錶明,隨著固含量的增加,氣孔率單調下降;固含量存在一優化值,此時陶瓷抗彎彊度最大;單體含量越大,氣孔率越大,而抗彎彊度降低.
이응효주모법제비다공담화규도자정교시험결과작위양본,건립3층Back Pmpagation(BP)신경망락,병진행훈련이예측도자성능.통과부가시험치대건립적신경망락예측능력진행험증,증명해BP신경망락모형시유효적,능준학예측다공담화규도자성능.통과BP신경망락모형연구다공담화규도자성능적결과표명,수착고함량적증가,기공솔단조하강;고함량존재일우화치,차시도자항만강도최대;단체함량월대,기공솔월대,이항만강도강저.
Based on orthogonal experimental results of porous SigN4 ceramics by gel casting preparation, a three-layer back propagation (BP) artificial neural network (BP ANN) was developed for prediction of the flexnral strength and porosity. The BP ANN is composed of three neurons in the input layer, two neurons in the output layer and six neurons the hidden layer. This study demonstrates that the proposed neural network approach can predict the performances of porous Si_3N_4 ceramics by gel casting preparation to a high degree of accuracy, and the neural network is a very useful and accurate tool for performances analysis of porous Si_3N_4 ceramics. By the proposed neural network prediction and analysis, the results suggest that the porosity monotonically decreases with the increase of solid loading, flexural strength is low when solid loading was too low or too high, and flexural strength has an optimum value.