中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2012年
7期
14-22
,共9页
张粒子%凡鹏飞%麻秀范%蔡学文
張粒子%凡鵬飛%痳秀範%蔡學文
장입자%범붕비%마수범%채학문
风电场群%时序规划%双层规划%调峰%适应性风险
風電場群%時序規劃%雙層規劃%調峰%適應性風險
풍전장군%시서규화%쌍층규화%조봉%괄응성풍험
clustering wind farms%timing planning%bi-level programming%peak-load regulation%adaptability risk
为解决基地化大规模开发中风电场群建设时序问题,提出与常规机组有机协同并统筹风电场群投资经济性和系统调峰适应性风险的时序规划方法。构建投资时序矩阵和运行状态矩阵刻画风电场和常规机组在投资和运行中的时间关联关系。采用调峰能力缺额风险值(valueatrisk,VaR)指标衡量调峰适应性风险,并提出计及风速相关性的调峰适应性风险评估方法;采用期权组合价值衡量风电场群投资时序的经济性,并建立考虑学习效应的经济价值评估模型。建立将投资经济性和调峰适应性风险有机统一的双层规划模型,并引入风险当量系数赋予模型罚因子明确的技术经济意义。将遗传算法与随机模拟相结合实现对模型的求解。算例验证了模型和方法的有效性。
為解決基地化大規模開髮中風電場群建設時序問題,提齣與常規機組有機協同併統籌風電場群投資經濟性和繫統調峰適應性風險的時序規劃方法。構建投資時序矩陣和運行狀態矩陣刻畫風電場和常規機組在投資和運行中的時間關聯關繫。採用調峰能力缺額風險值(valueatrisk,VaR)指標衡量調峰適應性風險,併提齣計及風速相關性的調峰適應性風險評估方法;採用期權組閤價值衡量風電場群投資時序的經濟性,併建立攷慮學習效應的經濟價值評估模型。建立將投資經濟性和調峰適應性風險有機統一的雙層規劃模型,併引入風險噹量繫數賦予模型罰因子明確的技術經濟意義。將遺傳算法與隨機模擬相結閤實現對模型的求解。算例驗證瞭模型和方法的有效性。
위해결기지화대규모개발중풍전장군건설시서문제,제출여상규궤조유궤협동병통주풍전장군투자경제성화계통조봉괄응성풍험적시서규화방법。구건투자시서구진화운행상태구진각화풍전장화상규궤조재투자화운행중적시간관련관계。채용조봉능력결액풍험치(valueatrisk,VaR)지표형량조봉괄응성풍험,병제출계급풍속상관성적조봉괄응성풍험평고방법;채용기권조합개치형량풍전장군투자시서적경제성,병건립고필학습효응적경제개치평고모형。건립장투자경제성화조봉괄응성풍험유궤통일적쌍층규화모형,병인입풍험당량계수부여모형벌인자명학적기술경제의의。장유전산법여수궤모의상결합실현대모형적구해。산례험증료모형화방법적유효성。
To solve timing planning problem of clustering wind farms, a method was proposed which could orchestrate investment economy of wind farms and adaptability risk of peak-load regulation by the investment timing coordination of wind farms and general units. The relationship between investment and operation of wind farms and units was depicted with investment timing matrix and operation state matrix. The index of value at risk (VaR) of peak-load regulating capacity vacancy was presented to measure the adaptability risk and risk assessment method considering correlation of wind speed was proposed. The value of options portfolio was introduced to measure the economy of investment timing of clustering wind farms, and economic value evaluation model was established considering the learning effect. Based on the above study, bi-level programming model was built to realize the organic unity of investment economy and adaptability risk of peak-load regulation and risk equivalent coefficient was introduced to endow the penalty factor with definite techno-economic significance. Mixed algorithm of Monte-Carlo simulation and genetic algorithm was proposed to solve the above model. Test system study results show that the proposed method is feasible and effective.