目的 分析比较1种非牛顿流体质控品对3种血液黏度计的适用性,探讨全血黏度测定质控品的适用性对室内质控及实验室间比对活动的影响.方法 用血液黏度计B、C、D在3种不同切变率下(1 s~(-1)、30 s~(-1)、200 s~(-1))对30份全血标本进行平行测定,根据测定结果绘出3台血液黏度计的全血切变率-黏度曲线.同时,在1个工作日内用上述3种血液黏度计对质控品A进行10次平行测定,根据测定结果绘出3台血液黏度计的质控品A切变率-黏度曲线.然后,在4个工作日内再用3种血液黏度计每日分别测定原厂家配套质控品及质控品A各5次,对每台血液黏度计的原厂家质控品及质控品A的4组日测定值进行F检验,考察其日测定值间是否有差异.最后,将质控品A分发给全国49家实验室,各实验室对其进行全血黏度测定,测定结果按实验室所用血液黏度计不同分为血液黏度计B组(20家)、血液黏度计C组(20家)与血液黏度计D组(9家),计算各组在切变率为1 s-1下的组内变异系数.结果血液黏度计B、C、D对30份全血标本的测定结果有较大差异,切变率1 s-1下的测定结果依次下降[(23.88±1.63)、(20.40±1.97)、(13.52±1.43)mPa·s];切变率200 s-1下却依次升高[(3.39±0.36)、(4.88±0.51)、(5.34±0.66)mPa·s];切变率30 s-1下血液黏度计C测值最高,余者依次为仪器D与B[分别为(8.14±0.75)、(6.97±0.83)、(4.74±0.68)mPa·s].3台血液黏度计对质控品A进行测定时,切变率1 s-1下的测定结果依次降低[(22.29±0.56)、(16.93±0.71)、(6.01±0.10)mPa·s];切变率30 s-1下血液黏度计C的测值最高,其次为B与D[分别为(7.35±0.07)、(4.29±0.05)、(3.57±0.05)mPa·s];切变率200 s-1时的测定结果依C、D、B的顺序下降[(3.43±0.03)、(3.07±0.04)、(2.92±0.04)mPa·s].分别比较3台血液黏度计测定原厂家质控品及质控品A的4组日测定值,切变率1 s-1下血液黏度计B测定原厂家质控品与质控品A的日测定值问差异无统计学意义(F值分别为2.63和1.37,P均>0.05),血液黏度计C与D测定原厂家质控品的日测定值间的差异也无统计学意义(F值分别为0.33和3.14,P均>0.05),但测定质控品A的日测定值间差异有统计学意义(F值分别为5.76和8.00,P均<0.05);切变率30s-1下3台血液黏度计测定原厂家质控品的日测定值间差异无统计学意义(F值分别为0.31、0.18和2.26,P均>0.05),对质控品A的日测定值间也差异无统计学意义(F值分别为1.03、1.83和2.40,P均>0.05);切变率200 s-1下3台血液黏度计测定原厂家质控品的日测定值间无差异(F值分别为2.59、0.68和2.96,P均>0.05),对质控品A的日测定值间亦差异无统计学意义(F值分别为2.31、3.01和2.28,P均>0.05).全国49家实验室在切变率1 s~(-1)下测定质控品A,血液黏度计B、C、D组的测定结果分别为(18.47±1.30)、(11.17±2.38)、(8.17±5.21)mPa·s,其中血液黏度计B组的组内变异最小(7.03%),血液黏度计D组与C组的组内变异依次为63.75%,21.31%.结论 质控品A可以在血液黏度计B上稳定模拟全血流变特性,但在血液黏度计C与D上只能部分模拟全血,故质控品A最适用于仪器B.由于人工制备的非牛顿流体质控物只能在一定条件下模拟全血的流变特性,因此实验室在选择室内质控品时应注意评价其流变学特性与全血的相似程度,只有在测定时可以近似模拟全血的候选品才可作为全血黏度测定的质控品.在选择第三方质控品作为实验室间比对用标本时,同样也需重视其适用性问题.通过充分的预实验以明确所选用质控品的适用性,可最大程度地减少由标本适用性所带来的室间差异,使实验室间比对结果能准确反映实验室检测质量.
目的 分析比較1種非牛頓流體質控品對3種血液黏度計的適用性,探討全血黏度測定質控品的適用性對室內質控及實驗室間比對活動的影響.方法 用血液黏度計B、C、D在3種不同切變率下(1 s~(-1)、30 s~(-1)、200 s~(-1))對30份全血標本進行平行測定,根據測定結果繪齣3檯血液黏度計的全血切變率-黏度麯線.同時,在1箇工作日內用上述3種血液黏度計對質控品A進行10次平行測定,根據測定結果繪齣3檯血液黏度計的質控品A切變率-黏度麯線.然後,在4箇工作日內再用3種血液黏度計每日分彆測定原廠傢配套質控品及質控品A各5次,對每檯血液黏度計的原廠傢質控品及質控品A的4組日測定值進行F檢驗,攷察其日測定值間是否有差異.最後,將質控品A分髮給全國49傢實驗室,各實驗室對其進行全血黏度測定,測定結果按實驗室所用血液黏度計不同分為血液黏度計B組(20傢)、血液黏度計C組(20傢)與血液黏度計D組(9傢),計算各組在切變率為1 s-1下的組內變異繫數.結果血液黏度計B、C、D對30份全血標本的測定結果有較大差異,切變率1 s-1下的測定結果依次下降[(23.88±1.63)、(20.40±1.97)、(13.52±1.43)mPa·s];切變率200 s-1下卻依次升高[(3.39±0.36)、(4.88±0.51)、(5.34±0.66)mPa·s];切變率30 s-1下血液黏度計C測值最高,餘者依次為儀器D與B[分彆為(8.14±0.75)、(6.97±0.83)、(4.74±0.68)mPa·s].3檯血液黏度計對質控品A進行測定時,切變率1 s-1下的測定結果依次降低[(22.29±0.56)、(16.93±0.71)、(6.01±0.10)mPa·s];切變率30 s-1下血液黏度計C的測值最高,其次為B與D[分彆為(7.35±0.07)、(4.29±0.05)、(3.57±0.05)mPa·s];切變率200 s-1時的測定結果依C、D、B的順序下降[(3.43±0.03)、(3.07±0.04)、(2.92±0.04)mPa·s].分彆比較3檯血液黏度計測定原廠傢質控品及質控品A的4組日測定值,切變率1 s-1下血液黏度計B測定原廠傢質控品與質控品A的日測定值問差異無統計學意義(F值分彆為2.63和1.37,P均>0.05),血液黏度計C與D測定原廠傢質控品的日測定值間的差異也無統計學意義(F值分彆為0.33和3.14,P均>0.05),但測定質控品A的日測定值間差異有統計學意義(F值分彆為5.76和8.00,P均<0.05);切變率30s-1下3檯血液黏度計測定原廠傢質控品的日測定值間差異無統計學意義(F值分彆為0.31、0.18和2.26,P均>0.05),對質控品A的日測定值間也差異無統計學意義(F值分彆為1.03、1.83和2.40,P均>0.05);切變率200 s-1下3檯血液黏度計測定原廠傢質控品的日測定值間無差異(F值分彆為2.59、0.68和2.96,P均>0.05),對質控品A的日測定值間亦差異無統計學意義(F值分彆為2.31、3.01和2.28,P均>0.05).全國49傢實驗室在切變率1 s~(-1)下測定質控品A,血液黏度計B、C、D組的測定結果分彆為(18.47±1.30)、(11.17±2.38)、(8.17±5.21)mPa·s,其中血液黏度計B組的組內變異最小(7.03%),血液黏度計D組與C組的組內變異依次為63.75%,21.31%.結論 質控品A可以在血液黏度計B上穩定模擬全血流變特性,但在血液黏度計C與D上隻能部分模擬全血,故質控品A最適用于儀器B.由于人工製備的非牛頓流體質控物隻能在一定條件下模擬全血的流變特性,因此實驗室在選擇室內質控品時應註意評價其流變學特性與全血的相似程度,隻有在測定時可以近似模擬全血的候選品纔可作為全血黏度測定的質控品.在選擇第三方質控品作為實驗室間比對用標本時,同樣也需重視其適用性問題.通過充分的預實驗以明確所選用質控品的適用性,可最大程度地減少由標本適用性所帶來的室間差異,使實驗室間比對結果能準確反映實驗室檢測質量.
목적 분석비교1충비우돈류체질공품대3충혈액점도계적괄용성,탐토전혈점도측정질공품적괄용성대실내질공급실험실간비대활동적영향.방법 용혈액점도계B、C、D재3충불동절변솔하(1 s~(-1)、30 s~(-1)、200 s~(-1))대30빈전혈표본진행평행측정,근거측정결과회출3태혈액점도계적전혈절변솔-점도곡선.동시,재1개공작일내용상술3충혈액점도계대질공품A진행10차평행측정,근거측정결과회출3태혈액점도계적질공품A절변솔-점도곡선.연후,재4개공작일내재용3충혈액점도계매일분별측정원엄가배투질공품급질공품A각5차,대매태혈액점도계적원엄가질공품급질공품A적4조일측정치진행F검험,고찰기일측정치간시부유차이.최후,장질공품A분발급전국49가실험실,각실험실대기진행전혈점도측정,측정결과안실험실소용혈액점도계불동분위혈액점도계B조(20가)、혈액점도계C조(20가)여혈액점도계D조(9가),계산각조재절변솔위1 s-1하적조내변이계수.결과혈액점도계B、C、D대30빈전혈표본적측정결과유교대차이,절변솔1 s-1하적측정결과의차하강[(23.88±1.63)、(20.40±1.97)、(13.52±1.43)mPa·s];절변솔200 s-1하각의차승고[(3.39±0.36)、(4.88±0.51)、(5.34±0.66)mPa·s];절변솔30 s-1하혈액점도계C측치최고,여자의차위의기D여B[분별위(8.14±0.75)、(6.97±0.83)、(4.74±0.68)mPa·s].3태혈액점도계대질공품A진행측정시,절변솔1 s-1하적측정결과의차강저[(22.29±0.56)、(16.93±0.71)、(6.01±0.10)mPa·s];절변솔30 s-1하혈액점도계C적측치최고,기차위B여D[분별위(7.35±0.07)、(4.29±0.05)、(3.57±0.05)mPa·s];절변솔200 s-1시적측정결과의C、D、B적순서하강[(3.43±0.03)、(3.07±0.04)、(2.92±0.04)mPa·s].분별비교3태혈액점도계측정원엄가질공품급질공품A적4조일측정치,절변솔1 s-1하혈액점도계B측정원엄가질공품여질공품A적일측정치문차이무통계학의의(F치분별위2.63화1.37,P균>0.05),혈액점도계C여D측정원엄가질공품적일측정치간적차이야무통계학의의(F치분별위0.33화3.14,P균>0.05),단측정질공품A적일측정치간차이유통계학의의(F치분별위5.76화8.00,P균<0.05);절변솔30s-1하3태혈액점도계측정원엄가질공품적일측정치간차이무통계학의의(F치분별위0.31、0.18화2.26,P균>0.05),대질공품A적일측정치간야차이무통계학의의(F치분별위1.03、1.83화2.40,P균>0.05);절변솔200 s-1하3태혈액점도계측정원엄가질공품적일측정치간무차이(F치분별위2.59、0.68화2.96,P균>0.05),대질공품A적일측정치간역차이무통계학의의(F치분별위2.31、3.01화2.28,P균>0.05).전국49가실험실재절변솔1 s~(-1)하측정질공품A,혈액점도계B、C、D조적측정결과분별위(18.47±1.30)、(11.17±2.38)、(8.17±5.21)mPa·s,기중혈액점도계B조적조내변이최소(7.03%),혈액점도계D조여C조적조내변이의차위63.75%,21.31%.결론 질공품A가이재혈액점도계B상은정모의전혈류변특성,단재혈액점도계C여D상지능부분모의전혈,고질공품A최괄용우의기B.유우인공제비적비우돈류체질공물지능재일정조건하모의전혈적류변특성,인차실험실재선택실내질공품시응주의평개기류변학특성여전혈적상사정도,지유재측정시가이근사모의전혈적후선품재가작위전혈점도측정적질공품.재선택제삼방질공품작위실험실간비대용표본시,동양야수중시기괄용성문제.통과충분적예실험이명학소선용질공품적괄용성,가최대정도지감소유표본괄용성소대래적실간차이,사실험실간비대결과능준학반영실험실검측질량.
Objective To exlore the influence of internal quality control and external quality control assessment(EQA) resulting from applicability of control samples in measurement of whole blood viscosity (WBV) through the analysis and comparison of applicability of 1 non-Newtonian fluid internal quality control sample in 3 viscometers. Methods Viscometer B, C and D were used to measure WBV of 30 blood samples in parallel under the shear rate(SR) of 1 s-1,30 s~(-1) and 200 s~(-1), then the blood SR-WBV curves of 3 viscometers were drawn according to the results. At the same time, viscometers B, C and D were used respectively to determine the WBV of control A 10 times in one day, then the control A SR-WBV curves were mapped. Three viscometers were used to measure the manufactory control samples and control A 5 times in one day for 4 days. Four groups of daily values of manufactory control samples and control A of each instrument were used to carry out F test to calculate whether 4 daily values are difference. Finally, the control A was dispensed in 49 laboratories nationwide chosen for measurement. On the basis of viscometer used, 20 laboratories were classified as group B, 20 laboratories were classified as group C and 9 laboratories were classified as group D. Then the data under SR of 1 s~(-1) were analyzed to calculate the coefficient of variation (CV) in the group. Results There was significant difference among the WBV of blood samples measured by the viscometers B, C and D. The results under SR of 1 s~(-1) declined in turn, and they were highest under SR of 30 s~(-1) followed by the values of viscometer D and B and they were (8.14±0.75), highest under SR of 30 s-1 followed by the values of viscometer B and D, and they were (7.35±0.07), daily values of manufactory control and control A of each instruments in four groups were compared. Under SR of 1 s~(-1), there was no difference between daily values of manufactory control and control A in viscometer B (F = 2.63, 1.37, P > 0.05), and there was no difference of daily values of manufactory control among viscometer C and D (F = 0.33,3. 14, P > 0.05), but significant daily difference existed when control A was tested by viscometer C and D (F = 5.76, 8.00, P < 0.05). Under SR of 30 s~(-1), there was no difference of daily values of manufactory control among 3 viscometers(F =0.31, 0.18, 2.26, P >0.05), and there was no difference of daily values of control A among 3 viscometers' (F = 1.03, 1.83, 2.40, P > 0.05); Under SR of 200 s~(-1), there was no difference of daily values of manufactory control among 3 viscometers (F =2.59, 0.68, 2.96, P > 0.05), and there was no difference of daily values of control A among 3 viscometers (F=2.31, 3.01, 2.28, P>0.05). When control A was tested under SR of 1 s~(-1) in 49 laboratories nationwide, the WBV values in groups of viscometer B, C and D were (18.47±1.30), (11.17±2.38), viscometer D and C were 63.75% and 21.3%. Conclusions Control A could fully mimic the properties of whole blood steadily on viscometer B, but partially mimic viscometer C and D, so the control A is most appropriate for viscometer B. Because current non-Newtonian fluid internal quality control could mimic rheological properties of whole blood under specifically conditions, laboratories should evaluate the consistent degree between control and whole blood, only the candidates which can mimic the properties of whole blood approximately could be chosen as quality control of WBV. When third-party control is chosen to be samples of EQA, its applicability should be in consideration. Pretest should be performed adequately to define applicability of third-party control, so as to reduce the difference among laboratories due to applicability of control and reflect detection quality of laboratories exactly.