中华创伤骨科杂志
中華創傷骨科雜誌
중화창상골과잡지
CHINESE JOURNAL OF ORTHOPAEDIC TRAUMA
2011年
7期
666-670
,共5页
胡新佳%林博文%王华%张美超%杨述华%肖德明
鬍新佳%林博文%王華%張美超%楊述華%肖德明
호신가%림박문%왕화%장미초%양술화%초덕명
胫骨骨折%骨钉%骨折内固定术,内%有限元分析
脛骨骨摺%骨釘%骨摺內固定術,內%有限元分析
경골골절%골정%골절내고정술,내%유한원분석
Tibial fractures%Bone nails%Fracture fixation,internal%Finite element analysis
目的 通过有限元分析探讨有限接触型动力加压钢板(LC-DCP)不同螺钉固定数目及位置对胫骨中段骨折的生物力学影响.方法获取正常胫骨CT薄层扫描图像,利用三维重建软件Mimics10.01及有限元分析软件Ansys 10.0建立正常胫骨有限元模型,并在此基础上制成胫骨中段斜形无缺损骨折模型,以14孔LC-DCP固定,根据螺钉固定数目及位置不同分为5组:A组固定第1、2、3、12、13、14孔,B组固定第1、4、7、8、11、14孔,C组固定第1、3、6、9、12、14孔,D组固定第1、2、7、8、13、14孔,E组第1~14孔全部固定.各模型压缩载荷为1000 N,扭转力矩为5 N·m.结果 A组螺钉受力以第3、12孔为大.B组螺钉压缩时受力均以第1孔为最大,第4孔次之;扭转时以第7、8孔为大.C组螺钉压缩时受力均以第1孔为最大,第3孔次之;扭转时受力以第6、9孔为大.D、E组螺钉压缩时受力均以第1孔为最大,第2孔次之;扭转时受力以第7、8孔为大.结论应用LC-DCP固定治疗胫骨中段骨折时以6枚螺钉固定14孔长钢板为妥,且以固定第1、2、7、8、13、14孔为最佳.
目的 通過有限元分析探討有限接觸型動力加壓鋼闆(LC-DCP)不同螺釘固定數目及位置對脛骨中段骨摺的生物力學影響.方法穫取正常脛骨CT薄層掃描圖像,利用三維重建軟件Mimics10.01及有限元分析軟件Ansys 10.0建立正常脛骨有限元模型,併在此基礎上製成脛骨中段斜形無缺損骨摺模型,以14孔LC-DCP固定,根據螺釘固定數目及位置不同分為5組:A組固定第1、2、3、12、13、14孔,B組固定第1、4、7、8、11、14孔,C組固定第1、3、6、9、12、14孔,D組固定第1、2、7、8、13、14孔,E組第1~14孔全部固定.各模型壓縮載荷為1000 N,扭轉力矩為5 N·m.結果 A組螺釘受力以第3、12孔為大.B組螺釘壓縮時受力均以第1孔為最大,第4孔次之;扭轉時以第7、8孔為大.C組螺釘壓縮時受力均以第1孔為最大,第3孔次之;扭轉時受力以第6、9孔為大.D、E組螺釘壓縮時受力均以第1孔為最大,第2孔次之;扭轉時受力以第7、8孔為大.結論應用LC-DCP固定治療脛骨中段骨摺時以6枚螺釘固定14孔長鋼闆為妥,且以固定第1、2、7、8、13、14孔為最佳.
목적 통과유한원분석탐토유한접촉형동력가압강판(LC-DCP)불동라정고정수목급위치대경골중단골절적생물역학영향.방법획취정상경골CT박층소묘도상,이용삼유중건연건Mimics10.01급유한원분석연건Ansys 10.0건립정상경골유한원모형,병재차기출상제성경골중단사형무결손골절모형,이14공LC-DCP고정,근거라정고정수목급위치불동분위5조:A조고정제1、2、3、12、13、14공,B조고정제1、4、7、8、11、14공,C조고정제1、3、6、9、12、14공,D조고정제1、2、7、8、13、14공,E조제1~14공전부고정.각모형압축재하위1000 N,뉴전력구위5 N·m.결과 A조라정수력이제3、12공위대.B조라정압축시수력균이제1공위최대,제4공차지;뉴전시이제7、8공위대.C조라정압축시수력균이제1공위최대,제3공차지;뉴전시수력이제6、9공위대.D、E조라정압축시수력균이제1공위최대,제2공차지;뉴전시수력이제7、8공위대.결론응용LC-DCP고정치료경골중단골절시이6매라정고정14공장강판위타,차이고정제1、2、7、8、13、14공위최가.
Objectives To determine biomechanical performances of limited contact-dynamic compression plate (LC-DCP) fixation with screws in different number and position for treatment of fractures of tibial shaft. Methods CT scan was performed for a fresh sample of adult tibia to construct a 3D finite element model of normal tibia using Mimics 10. 01 and Ansys 10. 0. Finite element models of oblique fractures of middle tibia were made on the basis of the normal model to be all fixed with LC-DCP of 14 holes but with screws in 5 different patterns. Model A was fixed with screws in the 1st, 2nd, 3rd, 12th, 13th and 14th holes; model B with screws in the 1st, 4th, 7th, 8th, 11th and 14th holes; model C with screws in the 1st,3rd, 6th, 9th, 12th and 14th holes; model D with screws in the 1st, 2nd, 7th, 8th, 13th and 14th holes;and model E with screws in all 14 holes. Finite element software Ansys 10. 0 was used to establish 3-D finite element models of 5 fixation models for tibial shaft fracture. Five kinds of digital loadings were simulated in computer, with 1000 N compressive load and 5 N · m torque moment for all models. Results In model A, the highest stresses were on the 3rd and 12th holes. In model B, the highest compressive stress was on the 1st hole, next by the 4th hole; the highest torsion stresses were on the 7th and 8th holes. In model C, the highest compressive stress was on the 1st hole, next by the 3rd hole; the highest torsion stresses were on the 6th and 9th holes. In models D and E, the highest compressive stress was on the 1st hole, next by the 2nd hole; the highest torsion stresses were on the 7th and 8th holes. Conclusions In treatment of tibia shaft fractures with minimally invasive percutaneous plate osteosynthesis, fixation with a 14-hole LC-DCP and 6 screws is appropriate. The appropriate fixation holes are the 1st, 2nd, 7th, 8th, 13 th and 14th holes.