数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2009年
3期
256-261
,共6页
反周期解%Rayleigh型方程%Leray Schauder不动点定理%时滞变量
反週期解%Rayleigh型方程%Leray Schauder不動點定理%時滯變量
반주기해%Rayleigh형방정%Leray Schauder불동점정리%시체변량
anti-periodic solution%Rayleigh equation%Leray Schauder fixed point theorem%deviating argument
应用Leray Schauder不动点定理,研究了一类具时滞的Rayleigh型泛函微分方程:x"(t)+f(x'(t))+g(x(t-τ(t)))=e(t)的反周期解问题,得到了反周期解存在的新的结果.
應用Leray Schauder不動點定理,研究瞭一類具時滯的Rayleigh型汎函微分方程:x"(t)+f(x'(t))+g(x(t-τ(t)))=e(t)的反週期解問題,得到瞭反週期解存在的新的結果.
응용Leray Schauder불동점정리,연구료일류구시체적Rayleigh형범함미분방정:x"(t)+f(x'(t))+g(x(t-τ(t)))=e(t)적반주기해문제,득도료반주기해존재적신적결과.
By means of Leray Schauder fixed point theorem,the authors study a Rayleigh type functional differential equation with a deviating argument as follows: x"(t)+f(x'(t))+g(x(t-τ(t)))=e(t).A new result on the existence of anti-periodic solution is obtained.