宁波大学学报:理工版
寧波大學學報:理工版
저파대학학보:리공판
Journal of Ningbo University(Natural Science and Engineering Edition)
2012年
1期
64-69
,共6页
粘弹性%有限变形%客观性原理
粘彈性%有限變形%客觀性原理
점탄성%유한변형%객관성원리
viscoelastic%finite deformation%the principle of objectivity
遗传积分形式与弹性元件和粘壶串并联表示的微分形式可以描述高聚物小变形情况下的粘弹性特性.文章以这些小变形的本构模型为起点,推出有限变形下的本构模型.一个有限变形过程分解成一系列微小变形子过程.小变形子过程中,应力的转动变化由弹性本构方程确定,主应力的变化由弹性元件和粘壶串并联结构的模型确定,这样提出了一个满足客观性原理的有限变形的粘弹性本构模型.模型材料参数随应变率而变,所以模型适合于从准静态到冲击载荷的较宽应变率范围.作为应用,计算了简单剪切有限变形,就建议的模型与现有的模型进行了比较,结果表明建议的模型能够描述高聚物有限变形情况下的粘弹性性质.
遺傳積分形式與彈性元件和粘壺串併聯錶示的微分形式可以描述高聚物小變形情況下的粘彈性特性.文章以這些小變形的本構模型為起點,推齣有限變形下的本構模型.一箇有限變形過程分解成一繫列微小變形子過程.小變形子過程中,應力的轉動變化由彈性本構方程確定,主應力的變化由彈性元件和粘壺串併聯結構的模型確定,這樣提齣瞭一箇滿足客觀性原理的有限變形的粘彈性本構模型.模型材料參數隨應變率而變,所以模型適閤于從準靜態到遲擊載荷的較寬應變率範圍.作為應用,計算瞭簡單剪切有限變形,就建議的模型與現有的模型進行瞭比較,結果錶明建議的模型能夠描述高聚物有限變形情況下的粘彈性性質.
유전적분형식여탄성원건화점호천병련표시적미분형식가이묘술고취물소변형정황하적점탄성특성.문장이저사소변형적본구모형위기점,추출유한변형하적본구모형.일개유한변형과정분해성일계렬미소변형자과정.소변형자과정중,응력적전동변화유탄성본구방정학정,주응력적변화유탄성원건화점호천병련결구적모형학정,저양제출료일개만족객관성원리적유한변형적점탄성본구모형.모형재료삼수수응변솔이변,소이모형괄합우종준정태도충격재하적교관응변솔범위.작위응용,계산료간단전절유한변형,취건의적모형여현유적모형진행료비교,결과표명건의적모형능구묘술고취물유한변형정황하적점탄성성질.
Hereditary integral formulations and differential formulations identified with spring and dashpot constructions can express the viscoelastic behaviors of polymeric materials at small deformations. In this paper, the models of small deformation serve as a starting point for the development of the viscoelastic constitutive models of finite deformation. A process of finite deformation is decomposed into a series of sub-processes of small deformation. The rotations of stress in sub-processes are determined by elastic constitutive equation. The changes in the principal stress are calculated using the spring and dashpot constructions. Then, a viscoelastic constitutive model, which satisfies the principle of objectivity, is presented. Such form of constitutive model in principle can be suitable for a range of strain-rates, e.g. either for quasi-static loading or for impact loading, with different material parameters in different strain-rates. As an application example, the simple shear deformation is computed to show that the proposed model can adequately well describe the viscoelastic behavior for polymers at finite deformations.