河南理工大学学报:自然科学版
河南理工大學學報:自然科學版
하남리공대학학보:자연과학판
JOURNAL OF HENAN POLYTECHNIC UNIVERSITY
2011年
4期
493-496
,共4页
M矩阵%Hadamard积%下界%最小特征值
M矩陣%Hadamard積%下界%最小特徵值
M구진%Hadamard적%하계%최소특정치
M matrix%Hadamard product%lower bounds%minimum eigenvalue
对A和B是非奇异M矩阵,利用著名的Gerschgorin圆盘定理,给出了B和A-1的Hadamard积B。A-1的最小特征值τ(BA-1)新的下界估计式,此下界估计式改进了现有的几个结果,并且这个下界估计式只涉及矩阵A和B的元素,易于计算.例证表明,所得下界估计式要比现有的下界估计式更加精确.
對A和B是非奇異M矩陣,利用著名的Gerschgorin圓盤定理,給齣瞭B和A-1的Hadamard積B。A-1的最小特徵值τ(BA-1)新的下界估計式,此下界估計式改進瞭現有的幾箇結果,併且這箇下界估計式隻涉及矩陣A和B的元素,易于計算.例證錶明,所得下界估計式要比現有的下界估計式更加精確.
대A화B시비기이M구진,이용저명적Gerschgorin원반정리,급출료B화A-1적Hadamard적B。A-1적최소특정치τ(BA-1)신적하계고계식,차하계고계식개진료현유적궤개결과,병차저개하계고계식지섭급구진A화B적원소,역우계산.예증표명,소득하계고계식요비현유적하계고계식경가정학.
Let A and B be nonsingular M matrices,this paper gives a new lower bound which is the minimum eigenvalue τ(B 。A-1) of the Hadamard product of A-1 and B by applying the famous Gerschgorin disc theorem,the bound improves several existing results and the estimating formula is easier to calculate for it is only depending on the entries of matries A and B.The given numerical example shows that estimating formulas of the bound is better than several known estimating formulas.