湖南广播电视大学学报
湖南廣播電視大學學報
호남엄파전시대학학보
JOURNAL OF HUNAN RADIO AND TELEVISION UNIVERSITY
2011年
4期
49-53
,共5页
遗传算法%选择策略%适应度排序%欧氏距离%海明距离
遺傳算法%選擇策略%適應度排序%歐氏距離%海明距離
유전산법%선택책략%괄응도배서%구씨거리%해명거리
Genetic algorithm (GA)%selection strategy%fitness sorting%Euclidean distance%hamming distance
遗传算法在许多优化问题中都有成功的应用,但其本身也存在一些不足。如何改善遗传算法的搜索能力,使其兼顾收敛速度和搜索范围,能更好地解决实际问题,一直是智能计算领域主要的课题之一。本文就3种常见的种群维护策略进行了比较与讨论,并分析了不同策略的优劣之处。
遺傳算法在許多優化問題中都有成功的應用,但其本身也存在一些不足。如何改善遺傳算法的搜索能力,使其兼顧收斂速度和搜索範圍,能更好地解決實際問題,一直是智能計算領域主要的課題之一。本文就3種常見的種群維護策略進行瞭比較與討論,併分析瞭不同策略的優劣之處。
유전산법재허다우화문제중도유성공적응용,단기본신야존재일사불족。여하개선유전산법적수색능력,사기겸고수렴속도화수색범위,능경호지해결실제문제,일직시지능계산영역주요적과제지일。본문취3충상견적충군유호책략진행료비교여토론,병분석료불동책략적우렬지처。
Genetic algorithms are successfully applied in many optimization procedures, but there are also some drawbacks of its own. How to improve the search capabilities of genetic algorithms to take into account the convergence speed and search range, and solve practical problems better, has been one of the main topics of intelligent computing field. In this paper, three common populations maintenance strategy are compared together, with the discussion and analysis of the strengths and weaknesses of different strategies.