纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2011年
4期
498-504
,共7页
宋军全%狄艳梅%沈守枫%张隽
宋軍全%狄豔梅%瀋守楓%張雋
송군전%적염매%침수풍%장준
Painleve性质%Burgers方程%精确解%对称群
Painleve性質%Burgers方程%精確解%對稱群
Painleve성질%Burgers방정%정학해%대칭군
Painleve property%Burgers equation%exact solution%symmetry group
为研究耦合Burgers方程的可积性,利用WTC测试方法,给出了第一类Burgers方程的Painleve性质和第二类Burgers方程的条件Painleve性质.进而得到了第一类方程的变量分离解和第二类方程的(N2+3N+6/2)-参数Lie点对称群.
為研究耦閤Burgers方程的可積性,利用WTC測試方法,給齣瞭第一類Burgers方程的Painleve性質和第二類Burgers方程的條件Painleve性質.進而得到瞭第一類方程的變量分離解和第二類方程的(N2+3N+6/2)-參數Lie點對稱群.
위연구우합Burgers방정적가적성,이용WTC측시방법,급출료제일류Burgers방정적Painleve성질화제이류Burgers방정적조건Painleve성질.진이득도료제일류방정적변량분리해화제이류방정적(N2+3N+6/2)-삼수Lie점대칭군.
In this paper, it is proven that the coupled Burgers equation of the first kind has Painleve property in the WTC meaning and a new variable separation solution is obtained. However, to the second kind of coupled Burgers equation, it just possesses conditional Painleve property. Then, (N2+3N+6/2) parameter symmetrygroup of this equation is found.