环境污染与防治
環境汙染與防治
배경오염여방치
ENVIRONMENTAL POLLUTION AND CONTROL
2010年
1期
14-19
,共6页
生物过滤%生物转鼓%NO%反硝化%空气污染控制
生物過濾%生物轉鼓%NO%反硝化%空氣汙染控製
생물과려%생물전고%NO%반초화%공기오염공제
biofiltration%rotating-drum biofilter%NO%denitrification%air pollution control
采用自行研制的生物转鼓过滤器(RDB)反硝化净化NO.结果表明,在实验温度为25~30 ℃、pH为7.0~7.5、转鼓转速为1.0 r/min、空床停留时间(EBRT)为86.40 s、营养液用量为5.0 L、营养液更换频率为0.2 L/d的条件下,RDB在30 d内完成挂膜;RDB稳定运行期间,当NO进气质量浓度为90~433 mg/m~3时,NO去除率维持在42.9%~85.2%,平均去除负荷为10.40 g/(m~3·h);转鼓转速决定了生物膜表面的更新速率和液膜厚度,当转速为0.5 r/min时,NO去除率达到最大值(75.0%);将营养液用量控制在1.3~3.0 L较为合理;EBRT是决定反硝化效率的重要因素,当EBRT为345.60 s时,NO去除率不受其进气浓度的影响,且去除率高达95%以上,当EBRT为43.20 s、NO进气质量浓度从98 mg/m~3增加到1 095 mg/m~3时,NO去除率从62.5%下降到30.7%,当进气负荷为50.00 g/(m~3·h)时,NO去除负荷达到最大值(27.50 g/(m~3·h)).
採用自行研製的生物轉鼓過濾器(RDB)反硝化淨化NO.結果錶明,在實驗溫度為25~30 ℃、pH為7.0~7.5、轉鼓轉速為1.0 r/min、空床停留時間(EBRT)為86.40 s、營養液用量為5.0 L、營養液更換頻率為0.2 L/d的條件下,RDB在30 d內完成掛膜;RDB穩定運行期間,噹NO進氣質量濃度為90~433 mg/m~3時,NO去除率維持在42.9%~85.2%,平均去除負荷為10.40 g/(m~3·h);轉鼓轉速決定瞭生物膜錶麵的更新速率和液膜厚度,噹轉速為0.5 r/min時,NO去除率達到最大值(75.0%);將營養液用量控製在1.3~3.0 L較為閤理;EBRT是決定反硝化效率的重要因素,噹EBRT為345.60 s時,NO去除率不受其進氣濃度的影響,且去除率高達95%以上,噹EBRT為43.20 s、NO進氣質量濃度從98 mg/m~3增加到1 095 mg/m~3時,NO去除率從62.5%下降到30.7%,噹進氣負荷為50.00 g/(m~3·h)時,NO去除負荷達到最大值(27.50 g/(m~3·h)).
채용자행연제적생물전고과려기(RDB)반초화정화NO.결과표명,재실험온도위25~30 ℃、pH위7.0~7.5、전고전속위1.0 r/min、공상정류시간(EBRT)위86.40 s、영양액용량위5.0 L、영양액경환빈솔위0.2 L/d적조건하,RDB재30 d내완성괘막;RDB은정운행기간,당NO진기질량농도위90~433 mg/m~3시,NO거제솔유지재42.9%~85.2%,평균거제부하위10.40 g/(m~3·h);전고전속결정료생물막표면적경신속솔화액막후도,당전속위0.5 r/min시,NO거제솔체도최대치(75.0%);장영양액용량공제재1.3~3.0 L교위합리;EBRT시결정반초화효솔적중요인소,당EBRT위345.60 s시,NO거제솔불수기진기농도적영향,차거제솔고체95%이상,당EBRT위43.20 s、NO진기질량농도종98 mg/m~3증가도1 095 mg/m~3시,NO거제솔종62.5%하강도30.7%,당진기부하위50.00 g/(m~3·h)시,NO거제부하체도최대치(27.50 g/(m~3·h)).
Self made rotating-drum biofilter (RDB) was employed for purification of NO contained waste gas. Under the conditions of 25-30 ℃, pH of 7.0-7.5, rotating speed of 1.0 r/min, Empty Bed Residence Time(EBRD) of 86.40 s, nutrient solution of 5.0 L and fresh nutrient solution replacement ratio of 0.2 L/d, the process of biofilm training was finished after 30 days of running. RDB presented high denitrificaion capability in stable operation, when the inlet NO concentration was 90-433 mg/m~3, NO removal efficiency ranged from 42.9% to 85.2% and average removal capacity was 10.40 g/(m~3·h). The optimum operating conditions were drum rotating speed of 0.5 r/min and nutrient solution of 1.3-3.0 L. EBRT was the key factor in determining the denitrification efficiency of RDB, when the EBRT was 345.60 s, the NO removal rate of RDB was stable at 95% with varying of inlet NO concentration. However, when the EBRT was changed to 43.20 s, NO removal rate decreased from 62.5% to 30.7% with NO inlet concentration increasing from 98 mg/m~3 to 1 095 mg/m~3. In this experiment, the maximum elimination capacities of RDB reached 27.50 g/(m~3·h) and it was a rather high value in comparison with the previous reported results, while the higher capacities could be achieved by optimizing the reactor configuration and operational parameters.